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ABSTRACT
Animal, specially rodent, studies are critical in understanding
human health, disease and treatments. Behavior is an impor-
tant observed outcome in many such studies. Thus, quantify-
ing rodent behaviors is key. This is typically done by trained
human observers, making the process very slow and subjec-
tive. This has has led to a growing interest in developing auto-
mated assessment tools. Existing approaches commonly rely
on hand-crafted features which are often obtained through
a tracking process. Motivated by state of the art results in
image and video analysis using deep learning, we propose a
deep architecture which is a combination of recurrent network
and 3D convolutional network to learn long and short-term
video representations. We test the proposed solution with the
dataset collected by [1] and demonstrate that our framework
can obtain accuracy on par with human assessment.

Index Terms— Rodent behavior recognition, 3D con-
vnet, LSTM network

1. INTRODUCTION

Life scientists often use rodent models to study diseases and
treatments, and commonly measure changes in behavior as a
result of the progression of disease or the recovery process
after treatment. At present, behavioral assessment is mainly
conducted by human annotators, making the process subjec-
tive, time consuming, and labor-intensive. Therefore, an auto-
mated analysis tool for animal behavior can ameliorate those
inherent limitations and allow high throughput analysis of ex-
periments (multiple animals at one time). Behavior analy-
sis is one of the most daunting tasks confronting machine
vision researchers. Over the last two decades, a myriad of
behavior recognition methods have been proposed to extract
the information about activities presented in videos. How-
ever, research on behaviour recognition mainly focuses on
human activities. Numerous methods have been proposed to
recognize activities such as ‘walking’, ‘waving’, or ‘punch-
ing’ [2] whereas rodents’ limbs are small in comparison with
their bodies and their limbs’ movements are restricted, which
make behaviours non-distinctive. Besides, intra- and inter-
class similarities make the problem amply challenging. This
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stems from the fact that activities within the same class may
be expressed by different subjects with different body move-
ments. As a result, there is often not a clear difference in
posture or movement intensity between certain activities such
as ‘grooming’ and ‘eating’, or ‘sniffing’ and ‘rearing’. In the
literature, a few systems have been developed to automate the
phenotyping of animals in their home-cage, typically involv-
ing extracting hand-crafted features. The most common ap-
proach is to track the animal in videos by tracking their bod-
ies [1, 3, 4, 5, 6] and other specific parts such as nose and
tail [7]. From tracking analysis, features such as velocity, ac-
celeration, zone information (distance to feeder, water tube
and cage wall) and posture are generated. Efforts to build
an automated system for identifying behaviors more complex
than locomotion and posture have achieved impressive results
recently. For instance, Dollar et al. [8] recognized mouse be-
havior from the classification of sparse spatio-temporal fea-
tures, reaching an accuracy of 72%. In [4], a system for
the recognition of social behavior of mice using top and side
cameras is proposed, in which a large pool of spatio-temporal
and trajectory features are generated and followed by a tem-
poral context model. The average accuracy over 13 behav-
ior classes was 61 percent. Similarly, [9] presents an inte-
grated hardware and software system that uses a depth cam-
era along with top and side cameras to extract the body pose
and supervised learning algorithms to classify social behav-
iors. By imitating the organization of the dorsal stream of
the visual cortex, which has been shown to play a role in
motion processing in biological vision, Jhang et al. [1] cre-
ated motion features and trajectory features to train a classi-
fier using a Hidden Markov Model Support Vector Machine
(SVMHMM). Inspired by breakthroughs in image recogni-
tion using deep learning techniques [10], several frameworks
have been proposed to recognize animal behavior. Exam-
ples include using features at a frame level in a two-class
problem [11, 12], and extracting frame-level features via a
2DCNN and learning temporal features with an RNN [13,
14]. Our question is whether abstract spatio-temporal features
obtained from deep networks [15, 16], which have been ap-
plied successfully to recognize activities in short videos [17],
are suitable for recognizing multiple behaviors in long videos,
and whether algorithms can work without hand-crafted fea-
tures that are dominant in most existing frameworks. We
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propose a framework that uses a 3D Convolutional network
(ConvNet) to extract short-term spatio-temporal features from
overlapped short clips. Then those local features are fed to
a Long Short Term Memory network to learn long-term fea-
tures which are used for classification. We call our framework
LSTM-3DCNN, and show how to learn local spatio-temporal
behavioral features using a 3D ConvNet and recognize be-
haviors in long videos with an LSTM network. The proposed
framework was evaluated with the dataset collected in [1].

2. RELATED WORK

Action recognition has been studied by the machine vision
community for decades. The approaches can be sorted into
two groups. The first group involves hand-designed fea-
tures which typically include spatio-temporal interest points
(STIPs) [18] which are obtained by extending Harris corner
detectors to 3D, HOG3D [19] and SIFT-3D [20] which are the
extensions of HOG [21] and SIFT [22]. The most common
classifiers for such features are SVMs. The second group uses
spatio-temporal features which are learned directly from the
datasets. For instance, Le et al. used independent subspace
analysis to learn spatio-temporal features from unannotated
videos [23] and Taylor et al. proposed convolutional gated
Restricted Boltzmann Machines (RBMs) [24], which can be
considered as an extension of convolutional RBMs to 3D,
to learn features. Learning visual representations with con-
volutional neural networks has shown great success on vari-
ous computer vision tasks [25, 26] and outperformed hand-
designed features in large-scale datasets. Extending ConvNet
for spatiotemporal features has been proposed and applied to
action recognition in recent works [15]. Feichtenhofer et al.
constructed ST-ResNet [17] which is the combination of two-
stream ConvNets [27] and Residual Networks (ResNets) [25]
and Varol et al. has proposed long-term temporal convo-
lutions (LTC) [28]. Both ST-ResNet and LCT achieved
the best performance on UCF101 and HMDB51, the two
popular action recognition datasets. However, those widely-
used benchmark action recognition datasets are segmented
short clips, as opposed to continuous videos. Donahue et
al. introduced Long-term Recurrent Convolutional Networks
(LRCN) [29] which allows encoding long-term temporal in-
formation because it is difficult to increase temporal extents
in 3D ConvNets due to memory limitations. Our work aims to
consolidate the advantages of both 3D ConvNets and RNNs
in a framework to work with continuous long videos.

3. SINGLE MOUSE BEHAVIOR DATASET

Collected by Serre et al. [1], the dataset is a large database of
videos of singly housed home-cage mice which was recorded
from a side camera under varying light conditions. Eight be-
haviors were considered: drinking, eating, grooming, hang-
ing, rearing, walking, resting and micro movements of the
head. Examples of video frames are shown in Fig. 1A.
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Fig. 1: (A) Snapshots taken from exemplary videos under
varying light conditions for the eight behaviors of interest. (B)
Distribution of behavior annotations for ‘clipped database’
(CD) and ‘full database’ (FD) over total time. FD∗ is a subset
of FD annotate by both human groups.

The dataset contains two subsets, denoted ‘clipped database’
(CD) and ‘full database’ (FD). The first set includes short
clips that have been human annotated with very high con-
fidence. These are the most exemplary samples of each
behavior. The second set has 12 long videos that are labeled
frame-by-frame by two human annotator groups. Group 1
annotated FD in entirety, and group 2 annotated a subset of it,
denoted FD∗, in order to evaluate agreement between the two
annotator groups. Fig. 1B shows the distribution of behavior
labels for CD, FD and FD∗.

4. DESCRIPTION OF LSTM-3DCNN

The overall architecture of our proposed framework is shown
in Fig. 2. The input to the framework is a sliding sequence
of frames from the long video. The deep architecture con-
sists of three parts: a 3D ConvNet for extracting local spatio-
temporal features, an LSTM network for learning long-term
temporal features, and a softmax classifier to recognize be-
havioral classes. In the following subsections, we elaborate
on how short and long-term features are learned.

4.1. 3D ConvNet for learning local spatiotemporal fea-
tures
We simplify notations by removing the channels. Thus, input,
kernel, and output are considered L × H × W 3D tensors,
where L is temporal length, H is height and W is width. The
detailed architecture of our 3D ConvNet is shown in Fig. 2.
Our structure is quite similar to the C3D model [15]. How-
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Fig. 2: Illustration of pipeline of proposed architecture with
details of 3D Convnet architecture for learning short term
spatiotemporal representations with 5 convolutional layers.
Each convolutional layer is followed by a rectified linear unit
(ReLU) and a max pooling layer.

ever, due to GPU memory limits, our 3D ConvNet is modified
to have 5 convolutional layers, 5 pooling layers, followed by
two fully connected layers and a softmax output layer. The
network uses an 8 × 128 × 128 input and all convolutional
kernels are 3 × 3 × 3 with stride 1 × 1 × 1. Pooling1 and
Pooling5 have kernel size of 1 × 2 × 2 with stride 1 × 2 × 2
while other pooling layers use 2 × 2 × 2 kernels with stride
2× 2× 2. Both fully connected layers have 2048 units.

To learn local spatio-temporal features, we train the net-
work with the videos in ‘clipped database’ which consists of
4,200 clips (262,360 frames equivalent to ∼2.5 h.) [1]. Each
video belongs to 1 of 8 behavioral categories. As can be seen
in Fig. 1B, the ‘clipped database’ is highly imbalanced. To
address this, we augment the behaviors having fewer exam-
ples by various forms of data augmentation. We randomly
adjust image brightness and contrast, and split videos of the
under-represented behaviors into more densely overlapped
clips. Therefore, the final training set becomes balanced. For
training, we resize input clips to 8 × 128 × 128. The 3D
Convnet was trained from scratch with ‘clipped database’
with a batch size of 32 examples and an initial learning rate
of 0.002. The learning rate was divided by 10 after every
3 epochs. The training was terminated after 15 epochs and
yields ∼95% accuracy on the test split.

After training, the 3D ConvNet is used as a feature ex-
tractor. We split 12 long videos in the ‘full database’ into
overlapped clips. These clips are passed to the network to
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Fig. 3: Improved classification with long-term temporal fea-
tures

extract fc6 activations which are then L2-normalized to be-
come 2048-dim descriptors. If we consider each clip as a vol-
ume RL×H×W , the C3D network transforms it into a feature
vector R2048.

4.2. LSTM network for learning long-term features
In order to capture long-term sequential information, we build
a recurrent network with LSTM cells [30]. Our architecture
consists of three stacked LSTM layers, each with 512 memory
cells, and then a softmax classifier which outputs the probabil-
ity of the behavior. The LSTM network was trained with long
continuous videos from the ‘full database’ to learn long-term
spatiotemporal features. Each video is split into a sequence
of 8-frame clips with 6 frames overlapped between two con-
secutive clips. Those clips are then passed to the 3D Convnet
which was previously trained successfully with the ‘clipped
database’ to be transformed into a sequence of features be-
fore being input to the LSTM model. Again, an imbalanced
dataset is a challenging issue in this stage (Fig. 1B). To cope
with this problem, we duplicate training samples of poorly
represented behavioral categories.

5. EXPERIMENTAL RESULTS

The system was implemented with Tensorflow. The proposed
networks were trained with one NVIDIA TITAN X GPU. To
evaluate the accuracy of the system, we trained and tested it
in the same way as the original paper [1]. We use a leave-one-
video-out procedure, in which we trained the system with 11
videos and evaluate on the remaining video. The procedure
was repeated 12 times for all videos and the results averaged.
The system was trained and tested based on the annotations
done by Annotator group 1. To investigate the effects of learn-
ing long-term features, we removed the LSTM network from
our system and used only the 3D ConvNet to classify each in-
divisual clip segmented from the ‘full database’. We compare
the accuracy of classification between 3DCNN and LSTM-
3DCNN in Fig. 3. Classification accuracy of all behaviors,
except eating, was significantly improved.

Fig. 4 shows the confusion matrices to measure agree-
ment between our framework and Annotator group 1, be-
tween the system proposed in [1] and Annotator group 1,
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Fig. 4: Confusion matrices for comparing the agreement be-
tween (A) our proposed framework and human scoring (B)
the system proposed by [1] and human scoring and (C) hu-
man to human scoring [1]

and between Annotator group 2 and Annotator group 1. All
three were evaluated on FD∗, annotated by both the human
groups. We also compared overall accuracy over all frames
and over all behaviors in FD. The data is summarized in Ta-
ble 1. Compared to the previously described system that used
handcrafted features [1], our system without handcrafted fea-
tures did better with behaviors drink, eat, groom, and walk.
However, it performed worse for rest and micro movement.
Since these behaviors accounted for ∼40% of FD, though our
behavior level performance is similar (75.9% vs. 76.4%), the
frame-level performance is worse (71.2% vs. 77.3%). This
was also true for a comparison over the entire ‘full database’.
Compared to the human annotators, our system achieved sim-
ilar results at both the behavior level (75.9% vs. 75.7%) and
the frame level (71.2% vs. 71.6%). In Fig. 5, the sequence of
behavior generated automatically by our system is compared
with human assessment over 5 minutes. The total time for

This work Jhuang Human
et al. [1]

FD∗ over behaviors 75.9% 76.4% 75.7%
FD∗ over frames 71.2% 77.3% 71.6%
FD over behaviors 76.5% 77.1%
FD over frames 73.5% 78.3%

Table 1: Behavior recognition accuracies across behaviors
and frames computed over the ‘full database’ (FD) and the
subset annotated by both human groups (FD∗).
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each behavior is shown in the right columns.

6. CONCLUSION
We presented a deep framework for recognizing mouse be-
haviors. We described how to learn local behavioral represen-
tations and integrate those features further to learn global fea-
tures. We tested our system on a large-scale dataset collected
by [1] containing multiple rodent behaviors. We showed that
long-term temporal features can significantly improve the per-
formance, and our system, without using any hand-crafted
features, can achieve a performance comparable to human
assessment and state of the art automated assessment. We
believe that combining deep features with hand-designed fea-
tures can further automate rodent behavior recognition.
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