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ABSTRACT

Adaptive subspace detectors (ASD) generalize matched sub-
space detectors (MSD) by accounting for possible correlation.
Both ASD and MSD are derived using the generalized likeli-
hood ratio test (GLRT). While MSD assumes there is no cor-
relation between observations, ASD estimates a sample co-
variance matrix of possibly correlated samples using signal-
free observations. In this paper, we address the performance
of the ASD when the number of secondary data is insuffi-
cient and the observed signal lies in higher dimensional space.
Such high dimensional spaces are frequently encountered in
functional magnetic resonance imaging (fMRI) data for the
analysis of brain activation detection. We propose a method-
ology that works based on the latent variables in a lower di-
mensional space. A low-rank decomposition of the sample
covariance matrix is derived based on the singular value de-
composition (SVD) and an adaptive basis selection method
is used to decide which eigen-vectors are useful in data pro-
jection. Performing detection in the lower dimensional sub-
space has the benefit of reducing the number of parameters
which need to be estimated. Simulation results show supe-
riority of our proposed adaptive reduced subspace detector
(ARSD) over conventional ASD in term of probability of de-
tection.

Index Terms— Detection, Likelihood Ratio Test, fMRI
and Adaptive Reduced Subspace Detector.

1. INTRODUCTION

Signal detection in a noisy environment is an important prob-
lem that arises in many applications such as radar [1], com-
munication [2] and medical imaging [3,4]. Neyman and Pear-
son [5] have shown that when parameters of the noise dis-
tribution are perfectly known, the likelihood ratio test is the
uniformly most powerful (UMP) test which maximizes the
probability of detection for a given false alarm rate. However,
in many applications, the likelihood ratio test is unknown and
therefore a UMP test cannot be derived. Therefore, several
studies have investigated alternatives for the likelihood ratio
test [6]. In [7] the matched subspace detector (MSD) was pro-
posed based on the generalized likelihood ratio test (GLRT),

for which all unknown parameters are replaced by their maxi-
mum likelihood values. In their study, [7] considers the noise
samples to be independent and identically distributed (i.i.d)
with a white Gaussian probability density. In another study,
Kelly proposed a method that considers a covariance matrix
for the noise distribution [8]. This covariance matrix is es-
timated from K signal-free samples. As an extension, [9]
proposed a method that assumes both training data and test
data have almost the same covariance structure, with only
a scale factor difference. This method is also based on the
likelihood ratio test and is named adaptive subspace detector
(ASD). The ASD can be viewed as a generalized case of the
MSD in which the data and subspaces are prewhitened using
the sample covariance matrix. There are also alternative tests
with different points of view, such as Rao test [10] and Wald
test [11] or based on model selection criteria [12,13] that have
been shown to be more suitable than the GLR under certain
conditions. However, this study solely focuses on improving
the performance of the GLRT.
The rest of the paper is organized as follows. In section 2
we present the background and problem statement. In sec-
tion 3 we propose our methodology. In section 4 we present
comparisons between conventional ASD and our proposed
method. Finally, in section 5 we present some concluding
remarks.

2. BACKGROUND

The detection problem that is addressed in our study is de-
scribed as follows. We are given d samples from a real and
scalar time series y(i), i = 0, 1, ..., d−1 that is represented by
the column vector y. This vector of observations is generated
by some components based on a general linear model (GLM):

y = µHθ + n (1)

where H ∈ Rd×p is a known matrix whose columns span the
signal subspace. It is also assumed that the columns of H are
linearly independent. µ is a scalar factor that is non-zero when
the signal is present. Entries of θ contains unknown deter-
ministic values. The noise components are n ∼ N (0, σ2R),
where σ2 and R are unknown and should be estimated sepa-
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rately from training data.
The aim of detection is to decide between the null hypothesis
H0 : µ = 0 and the alternative hypothesis H1 : µ > 0 for a
given measurement vector y. Given a set of K, i.i.d training
noise vectors N = [n1, ...,nK ], each distributed as N (0,R),
test signal vector y ∈ Rd is measured and y ∼ N (µHθ, σ2R).
It is clear that it is assumed σ2 = 1 where µ = 0. In [9] it was
shown that when θ and R are unknown, the following GLRT
based test can be used to detect the signal presence.

l(y) =
yT S−

1
2 PDS−

1
2 y

yT S−1y
(2)

where D is S−
1
2 H and PD = D[DT D]−1DT is the projection

operator that projects the whitened observation vector y onto
the subspace that is spanned by columns of D. The matrix

S =
1

K

K∑
i=1

ninT
i (3)

is the sample covariance matrix, which is estimated from the
K training data. This matrix S is actually an estimation of co-
variance matrix of noise R, that maximizes likelihood func-
tion. This solution for signal detection is referred as ASD.
In general, for signal detection using (1) estimation of p +
d(d + 1)/2 unknown parameters is required where p is the
number of entries of vector θ and d is dimension of the sym-
metric covariance matrix R. Therefore, the number of pa-
rameters to be estimated is of order O(d2). For a limited
training data and a high dimensional measurement vector y,
(in some applications such as radar and medical imaging) ap-
plying ASD directly on data is inefficient and parameters are
highly deviated from their actual values. Therefore, intro-
ducing knowledge about the covariance matrix is required to
improve the performance of ASD.

3. PROPOSED METHOD

As mentioned earlier, in high dimensional space hypothesis
testing, there are many unknown parameters (in the order of
O(d2)) that should be estimated. Several studies have ad-
dressed this issue by assuming a known structure for the co-
variance matrix [14]. One of the ways of introducing struc-
ture to the covariance matrix in order to improve performance
of the detector (2), is to assume that the measurement vector
y and noise vector n depend on latent variables in a lower di-
mensional space. In other words, when the number of training
data is insufficient, the covariance matrix can be described by
a few dominant eigen-vectors/values. Based on this assump-
tion, there are two latent variables z ∈ Rd1 and e ∈ Rd1 with
d1 � d and

y = Ud1
z and n = Ud1

e (4)

where Ud1 is an unknown d × d1 matrix whose columns are
orthogonal, (i.e. UT

d1
Ud1

= Id1
, where Id1

is the identity
matrix of size d1 × d1). It is also assumed that {e} is a zero
mean Gaussian noise vector with a d1× d1 covariance matrix
Λ. Substituting (4) in (1) we have

Ud1
z = µHθ + Ud1

e (5)

Multiplying both sides by UT
d1 gives

z = µUT
d1

Hθ + e (6)

In lower dimensional space, the formulation of (6) is the
same as (1) and we can apply standard detection theory re-
sults on the latent variable z with the difference that the signal
subspace in the lower dimensional space is the span of the
columns of UT

d1
H, instead of H. Therefore, the number of

unknown parameters is reduced to p+ d1(d1 + 1)/2 which is
significantly less than p + d(d + 1)/2, corresponding to the
higher dimensional space. In general, using an optimum pro-
jection for the lower dimensional space, we may lose some
useful information, however, the advantage is that we only
need to estimate a small number of parameters. Reducing the
number of parameters reduces the parameter estimation error
too.
The ASD for the latent variable z is:

l(z) =
zT Λ̂

− 1
2 PBΛ̂

− 1
2 z

zT Λ̂
−1

z
(7)

where B is Λ̂
− 1

2 UT
d1

H and

Λ̂ =
1

K

K∑
i=1

UT
d1

ninT
i Ud1

= UT
d1

SUd1
(8)

Finally, using threshold value τ , we can decide between H0

and H1. We name our reduced version of ASD, the adaptive
reduced subspace detector (ARSD).

3.1. Estimation of Ud1

The primary challenge of ARSD is finding the best projection
matrix Ud1

. When the number of training data is insufficient,
the sample covariance matrix is not consistent and the eigen-
values and eigen-vectors of the sample covariance matrix can
be significantly different from their true values [15].
In order to find a suitable projection basis set, we need to
investigate equation (7) in detail. After reparameterizing of
the reduced version of the test in terms of y, we will have

l′(y) =

yT Ud1Λ̂
−1

UT
d1

H(HT Ud1Λ̂
−1

UT
d1

H)−1HT Ud1Λ̂
−1

UT
d1

y

yT Ud1
Λ̂
−1

UT
d1

y
(9)
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Algorithm 1 Proposed ARSD
Input: Observation vector y, Training data N, H, d1,α, τ
Output:Decision onH0 orH1

1: procedure ARSD

2: S← 1
K

K∑
i=1

ninT
i

3: U,Γ,UT ← SV D(S)
4: Ud1 ← solve equation (11) or (16)
5: z← UT

d1
y

6: Λ̂← 1
K

K∑
i=1

UT
d1

ninT
i Ud1

7: B← Λ̂
− 1

2 UT
d1

H

8: l(z)← zT Λ̂
− 1

2 PBΛ̂
− 1

2 z
zT Λ̂

−1z
9: Output← H0

10: if l(z) ≥ τ then
11: Output← H1

In comparison with the test shown in equation (2), the only
difference is the estimated covariance matrix which is a mod-
ified form of the sample covariance matrix, that is:

R̂
−1
Mod = Ud1

Λ̂−1UT
d1

= Ud1
(UT

d1
SUd1

)−1UT
d1

(10)

We would like to find a basis set Ud1
that improves the overall

performance of the detector in (7). For finding the best pro-
jection matrix, we consider two different cases of covariance
structures on which our method can be applied.

3.1.1. R with uniform diagonal components

When the covariance matrix has the same diagonal compo-
nents, it means that the variance of the noise is fixed for all
components of noise vector n, which can happen in many ap-
plications. In this case study, we need to solve the following
optimization problem:

Ûd1
= arg min

Ud1

‖Ud1
UT

d1
SUd1

UT
d1
− S‖2F (11)

where ‖.‖2F shows Frobenius norm of a matrix. This opti-
mization problem means that we need to regularize the sam-
ple covariance in a way that the result gets close enough to
the sample covariance. For a known d1 the solution is the first
d1 eigen-vectors of S.

3.1.2. Ill-conditioned R

In the previous section, the solution was the first eigen-vectors
of the sample covariance. It means that the last eigen-vectors
were in the direction of the noise which is caused by insuffi-
ciency in the training data. In this new case, when the covari-
ance matrix is in ill condition, we cannot have the same strat-
egy. In this case, R−1 is significantly dependent on the last

eigen-vectors and we should be careful about picking eigen-
vectors. A standard approach is to find the maximum likeli-
hood (ML) estimate for Ud1

. To compute the likelihood for
the given projected training data we have:

f [UT
d1

n1, ...,UT
d1

nK ] =[ 1

πd1|UT
d1

RUd1 |
exp{−tr((UT

d1
RUd1

)−1UT
d1

SUd1
)
]K (12)

where |.| shows the determinant of a matrix. This likelihood
function has two variables R and Ud1

that need to be esti-
mated via ML. To do this, we follow a two-stage estimation
procedure. We first assume Ud1 is fixed and estimate R. In the
second stage, we keep R fixed and estimate Ud1 . Assuming
Ud1

is fixed, we have:

UT
d1

RUd1
= UT

d1
SUd1

(13)

The optimal R must satisfy (13). Therefore, we now replace
UT

d1
RUd1

in (12) with UT
d1

SUd1
and after simplification

f [UT
d1

n1, ...,UT
d1

nK ] ∝ 1

|UT
d1

SUd1
|

(14)

Now, maximizing the likelihood with respect to Ud1
can be

changed to the following problem

Ûd1 = arg min
Ud1

|UT
d1

SUd1 | (15)

In (15), if d1 is assumed to be known, the solution is the last
d1 eigen-vectors which can be obtained by singular value de-
composition of the sample covariance matrix S. So far, we
have found that to maximize the likelihood function, we need
to pick the last eigen-vectors. However, we know that al-
though S is highly deviated from the actual covariance when
the number of training samples is insufficient, but the sam-
ple covariance is a consistent estimation when data is enough.
Therefore,our solution must also be as close as possible to the
sample covariance matrix S in the Frobenius norm sense (sim-
ilar to 11). As a result, instead of a conventional maximum
likelihood solution for Ud1

, we are faced with a constrained
optimization problem which can be written as a multi objec-
tive optimization problem:

Ûd1
= arg min

Ud1

|UT
d1

SUd1
|+α‖Ud1

UT
d1

SUd1
UT

d1
−S‖2F (16)

which tries to maximize the likelihood such that the estimated
covariance remains in the neighborhood of the sample covari-
ance. The eigen-vectors that keep the covariance as close as
possible to the sample covariance in terms of Frobenius norm,
are the first eigenvectors of S. Meanwhile, the last eigen-
vectors minimize the determinant, the first term of (16). Fi-
nally a combination of the first a and the last b eigen-vectors
of S is the solution of problem (16) where a+ b = d1. Algo-
rithm 1 summarizes the basis selection method for ARSD.
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Fig. 1: Average and standard deviation of Frobenius norm of difference between the actual and the estimated (a) covariance,
(b) covariance inverse and (c) θ.
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Fig. 2: ROC of detectors in SNR=12 dB (a) R with uniform diagonal components, (b) Ill-conditioned R

4. SIMULATION RESULTS

In this section, we address the performance of ARSD in com-
parison with conventional ASD when the training data is in-
sufficient. During simulation, we assume d = 40, and the
number of training data K is 60, which means that K is not
significantly larger than d. In lower dimensional space, we
can change the dimension to the d1 that makes the K/d1
large. We randomly produce the signal subspace matrix H
of size 40 × 2 (based on event related stimulus function of
fMRI data analysis [16,17]) and it is fixed for all simulations.
First, using equations (8), (11) and (16), parameters Λ and
Ud1

are estimated in lower dimensional space. These param-
eters are then used in ARSD (7) and will assess the probability
of detection. Figure 1 shows the average and standard devi-
ation of Frobenius norm of error between the estimated and
actual θ, R and R−1 where a random uniform covariance is
used. It can be seen that when we bring the observation vector
to a lower dimensional space for a range of d1, we can have a
better estimation of θ which makes our test performance bet-
ter (see figure 1c).
Finally figure 2 illustrates the performance of the proposed

detector in comparison with conventional ASD using a re-
ceiver operating characteristic (ROC) curve. In this figure,
the performance of the proposed method is shown where we
can see that ARSD (black) always outperforms ASD (green).
The red ROC curve shows the oracle scenario where the co-
variance matrix is known. When we increase the value K,
both of ASD and ARSD plots converge to the red plot.

5. CONCLUSION

In this study, a reduced version of the adaptive subspace de-
tector (ASD) was proposed, namely adaptive reduced sub-
space detector (ARSD). It was shown for some scenarios, by
bringing data to a lower dimensional space, the likelihood
ratio test can provide a better probability of detection. The
most important section of the algorithm is providing proper
orthonormal basis to project data. We have used a basis selec-
tion method that picks some eigen-vectors among the sorted
eigenvectors of the sample covariance to minimize our de-
fined objective function.
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