
DETECTION OF NON RANDOM PHASE SIGNAL IN ADDITIVE NOISE WITH 
SURROGATE ANALYSIS 

ABSTRACT 

The Surrogate Analysis (SA) is known to detect nonlinear 
signals, non-stationary signals and ARMA systems driven by 
non-Gaussian processes. This paper adds to address the 
detection of non-random phase signal, of which the linear 
phase signal is the best-known example. This is a new 
interpretation of the SA. In order to highlights the benefits of 
the interpretation, a new theoretical signals is constructed. 
The signal has a perfect Gaussian distribution and is not 
affected by periodic extension and is a linear phase signal. 
The SA will be shown able to detect this signal in a noise with 
exactly the same power spectrum. It will be clear that the SA 
is able to detect phase linearity even when the data is 
normally distributed. An application of the detection by SA 
is given regarding very noisy and short time 
electrocardiogram (ECG) signal and compared to higher 
order statistics and normality tests for this purpose.  

Index Terms— Nonlinear Analysis, Hypothesis Testing, 
Detection, Bootstrap Method, Biomedical Signal, Fractal 
Dimension. 

1. INTRODUCTION 

The Surrogate Analysis (SA) [1] is a widely used method of 
nonlinear analysis applied to a large spectrum of domain. The 
first applications were found in physics to detect low order 
chaos [2]. Since a large literature has been developed for the 
SA in the study of bio signals, notably in brain imaging 
techniques such as EEG and MEG [3][4]. Also, financial time 
series have been explored through SA [5]. 

The SA is a statistical test that has for null hypothesis that the 
signal can be obtained from a linearly filtered stationary white 
Gaussian noise (ARMA process). Any departure from this 
hypothesis yields a positive result [6]. Hence, although the 
assessment low order chaos was first aim of the SA, other 
underlying phenomena have been targeted. The effect of the 
time varying aspect has been noticed in [1][7], more as a bias 
of the SA. It was, however, later developed as a useful tool to 
assess non-stationarity in [8]. The non-Gaussian driving 
process deviation aspect has been considered in the context 
of financial time series [9]. It seems that the whole spectrum 
of possible departure from the null hypothesis has been 
treated. From another point of view, let is considered 
specifically the Fourier based SA [1], which is the original 
and most commonly used version of the SA. This approach 

indirectly addresses the ARMA null hypothesis. More 
directly stated, the null hypothesis is that the signal is such as 
its phase in the Fourier Spectrum is random. From this 
hypothesis, a new possible departure from the null hypothesis 
is revealed. But there is a link between the two points of view. 
From the ARMA hypothesis, one could ask: “Can an ARMA 
system produce a signal in which there is a non-random Phase 
Spectrum?” A simple illustration of a non-randomness is the 
difference between a Dirac function and a white Gaussian 
noise: both have a constant power spectrum, but while the 
Dirac’s phase spectrum is linear, or even constant, the noise’s 
one is uniformly distributed. Obviously, it is usually not 
necessary to use nonlinear analysis to detect a Dirac signal.  

This paper shows that the SA can detect some non-
randomness in the phase spectrum of a signal. In the simplest 
form, this non-randomness will be a null or linear one. The 
demonstration is a new theoretical signal that has Gaussian 
distribution by construction, which is not affected by periodic 
extension and is a linear phase signal. A less theoretical 
simulation where a real electrocardiogram (ECG) signal is 
detected within a frame of approximately 2 seconds in high 
levels of noise will show that the method has potential 
practical applications. In that case, there is no question of 
linear phase signal but clearly, the ECG is not a random signal 
and its Phase Spectrum should neither be random. The Fractal 
Dimension (FD) will be used in the SA. 

The detection of ECG signal is an important aspect in Fetal-
ECG [10]. It is necessary for channel selection after 
application of Principal Component Analysis (PCA) and 
Independent Component Analysis (ICA). In [11], only the 
Kurtosis is used to perform the channel selection. This paper 
shows that the SA can be more sensitive for detecting the 
ECG component. Also, the proposed method could be used 
also in a preprocessing step prior to the PCA and ICA by 
selecting the “most interesting” channels. This is important 
since the position of the sensors of Fetal-ECG systems are not 
necessarily placed at constant locations in relation to the fetus 
and the number of sensors are generally high. Let’s note 
briefly that the ECG detection could in a similar way be 
useful in wearable ECG devices [12], especially when a good 
contact of the electrodes with the skin is not guaranteed. It 
must be emphasized that, the detection problem has never 
been tackled by the use of SA, e.g. [13][14]. The SA was only 
used to assess the signal characteristic in order to validate a 
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model or the validity of a nonlinear feature, with the 
exception of [15] where a SA scores were used as a signal 
feature for a classification problem. 

The paper is organized as follows: Section 2 presents the SA 
and FD algorithms. Section 3 details the test signals and 
experimentations and performance results are discussed in 
Section 4. Finally, the conclusions are drawn in Section 5. 

2. ALGORITHMS 

The Surrogate Analysis (SA) and the Fractal Dimension (FD) 
methods are detailed in this section. 

2.1. Surrogate Analysis 

The SA is presented in its most standard version as in the 
Theiler’s paper [1] and is shown in Fig. 1, where x defined 
the original data signal. It consists of comparing a nonlinear 
feature of the original series to the same features calculated 
on surrogate series. The surrogate series are generated by 
phase randomization in the Fourier domain, more precisely 
by sequentially applying the Fast Fourier Transform (FFT) to 
the original data to transform the data in the frequency 
domain, randomize the phase with conjugate symmetry to 
keep the signal real, and using the Inverse FFT (IFFT) to 
obtain the time domain surrogate. 

2.2. Fractal Dimensions 

Two methods for calculating the FD are considered, namely 
the Higuchi’s [16] and Katz’s [17] methods. These come 
from slightly different theory and yield different results, 
especially when series are not pure fractals, which is almost 
always the case. Also, the methods have parameters which 
can highly modify their behavior [18][19]. It is desirable that 
the two methods show different aspects of the signals. 

The Higuchi’s method consists of the slope L Spectrum, i.e. 
the logarithm of the signal absolute length with respect to the 
logarithm of the subsampling factor k:  
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This spectrum is averaged for m, the starting point: 

 �(�) = ∑ ��(�)
�
��� /� (2) 

It is possible to only take some subsampling factor k. When 
the maximum of k is high, the values are generally 

logarithmically spaced. On the other side, the Katz’s FD, �� , 
is obtained by: 
 �� = log(�)/log (�) (3) 

where L is the total length of the time series: 
 � = ∑ ����((���� − ��)
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and d is the maximum distance between any two points. 
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The signal at time step n is denoted by ��. The parameter α 
is the homogeneity factor between the time and signal units. 
The method was made for waveforms, i.e. for 
multidimensional data where the dimensions are 
homogeneous. For time series, an appropriate ratio between 
the time step and signal units must be chosen [19]. However, 
by choosing this ratio high enough, it can be shown that the 
Katz’s FD will correspond to a regularized version of the 
offset of the Higuchi’s method L Spectrum, likely giving 
different information. Finally, to ensure that the Katz’s 
method is amplitude scale invariant, a normalization of the 
signal is done before calculation of the FDs. Let’s note that 
Higuchi’s method is intrinsically amplitude scale invariant. 

3. TEST SIGNALS AND NUMERICAL 
EXPERIMENTATION 

Two experiments are proposed to highlights the detection 
capacity of the SA, one purely numerical and the other semi-
empirical.  

3.1. Perfectly Gaussian Impulse in Colored Noise 

The goal of the first experiment is to detect a signal that has 
a perfectly Gaussian distribution and which is in noise which 
has exactly the same power spectrum. The signal is composed 
built around the Inverse Cumulative Distribution Function 
(ICDF) of the Gaussian distribution. If the ICDF was to be 
used as the final signal, it would be extremely easy to detect 
by the SA because of the discontinuity induced by the 
periodic extension of the FFT. Therefore, by using twice the 
ICDF in reverse order, the periodic extension discontinuity 
can be completely removed. To make the signal more similar 
to other common pulse, it is rearranged such that it starts and 
finished at zero. This is simply equivalent to applying a 
circular delay. It is noteworthy that the peak values are 
determined by the number of data points used in the ICDF. 
The additive noise is constructed to have the same power 
spectrum as the signal itself by using the same process as for 
the generation of the surrogate series. Such approach to create 
a colored noise was not found in the literature. The signal and 
an example of the noisy signal are shown in Fig. 2 (a) and (b). 

The detection is considered unsupervised, meaning that no 
information about the signal will be used, apart the fact that 
it is not stochastic. The question asked by applying the 
detection algorithms is “Is there something that is non-
stochastic?”. Although the SA has never been used for a 

 
Fig. 1. Surrogate analysis for a left-sided unilateral test. 
Nineteen surrogate signals are generated. The FD of the original 
data x is compared to the minimum FD of the surrogates. 
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detection problem, SA is made to answer that last question. It 
will be compared with Kolmogorov-Smirnov (KS) [20] and 
Shapiro-Wilk (SW) [21] normality test which represents a 
good overview of the existing methods [22]. The KS and SW 
tests used α = 0.05. The effect of both the signal to noise ratio 
(SNR) and the number of data points are observed. The 
Monte-Carlo simulation will have 10 000 trials per point. 

 3.2. Detection of ECG in Noise 

To show the potential of the SA to be used for real-world 
applications, the detection of ECG within noise was done. A 
real ECG signal, from Physionet Databank [23] (first subject, 
fourth channel), is taken as the known, noiseless signal. 
Obviously, this signal contains noise, but it is of much lower 
power than the noise that is added synthetically. The additive 
noise is a random Gaussian white noise. The particular 
channel was chosen so that simpler detection methods such 
as thresholding would perform poorly. The time span of the 
windows was 2.048 seconds. It is a reasonably short period 
of time to detect presence of ECG for most thinkable 
applications. Although it is clear that any filtering method 
would increase the effective SNR drastically (easily over 
7 dBs), the interaction between the filtering and nonlinear 

features is not well defined in the literature, and even less for 
SA. For this reason, the use of filtering is postponed for future 
works. In the case of windowing, it is shown in [24] that it 
can avoid spurious detections. Hence, a Tuckey window with 
a flat section ratio of 0.5 was used. Examples of the different 
signals involved in the ECG detection are shown in Fig. 3 (a) 
and (b). The windowed version of the signal is not shown. 
The Monte-Carlo simulation will have 30 000 trials per 
points, with windows selected randomly along the time 
series.  

4. RESULTS AND DISCUSSION 

The phase spectrum of the noiseless signal and the noisy 
version at 0 dB are presented in Fig. 2 (c). For the noiseless 
version, it is perfectly linear. With the noise, the 
non-randomness of the phase is unclear from the plot, but it 
was detected by the SA. Hence, the SA can detect non-
random relation that is difficult to see from the phase 
spectrum. In Fig. 4, the detection rates for Higuchi’s SA and 
SW test are shown. Quite surprisingly, in Fig. 4 (b) the SW 
test was giving positive results at low SNR. This means that 
even though the original signal is Gaussian, its Surrogate can 
become non-Gaussian. It is a fact, in our knowing, not found 

 
(a) 

 
(b) 

 
(c) 

Fig. 2.  Proposed signal with perfect normal distribution (a) and 
noisy version (b) at an SNR of 0 dB. The signal is created by the 
inverse cumulative function of the Normal distribution of 256 
points, used twice, for a total of 512 points. The signal starts and 
finishes at 0. The added noise is done by phase randomization of 
the signal in the Fourier domain. It has the same power spectrum 
as the original signal. The unwrapped version of the phase 
spectrum is shown in (c) for the noiseless and noisy signal. 

 

 
(a) 

 
(b) 

 
 (c) 

Fig. 3.  Example of the different signals involved in the ECG 
detection experiment for a 2.048 second window and an SNR of 
8 dB. In (a), the noisy ECG is shown. It is on the windowed 
version that the phase randomization is performed.  An example 
of surrogate signal is shown in (b). It is on the windowed version 
that the FD is calculated. The distribution of the 19 surrogate 
series FDs is presented for Higuchi’s method in (c) along with the 
FD of the noisy series located by the stem at FD = 1.866.  
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in the literature. Because of this reverse relation, the 
performances of the different algorithms were compared at a 
50% detection rate in Fig. 5. While for the SA method, Katz 
and Higuchi, more data gives better results, it’s the opposite 
for the KS and SW tests. Hence, the longer the data, the more 
its Surrogate has a Gaussian distribution. 

Although both Katz’s and Higuchi’s are FD methods, they 
had fairly different performance in both experiments. This is 
not necessarily a negative point for Katz’s method. It might 
indicate that the two methods detect uncorrelated aspects and 
in this case, it may be possible to use both methods together. 

Because of the behaviour observed on the theoretical study, 
it was decided to adjust the method so that a 5% false positive 
rate would be obtained on pure noise for the ECG detection 
simulations. The noisy ECG and one surrogate example are 
given in Fig. 3 (a) and (b) while an example of Surrogate FD 

distribution is found in (c). The ECG detection results are 
shown in Fig. 6. No particular method was dominating the 
other. However, the Higuchi’s SA had the sharpest transition 
and was the only one to obtain 100% success rate at high 
SNR. Again, it could be suggested to use multiple nonlinear 
features to obtain better results. 

5. CONCLUSION 

 In this paper, a new interpretation of the SA, along with a 
signal with perfect normal distribution and linear phase was 
presented. This signal allowed to highlight the fact that SA is 
able to detect non ARMA signals even when the data is 
normally distributed. Moreover, the use of SA for the 
detection of ECG (or even any desired signal) in noise was 
shown for the first time. A theoretical simulation showed that 
the SA could outperform other nonlinear features that are 
based on the distribution. The interpretation of the theoretical 
results was that SA could detect phase linearity. To show the 
potential of the SA and its new interpretation on real-world 
applications, the detection of an ECG signal in noise was 
therefore tried by the method. It was shown that SA could 
again be used advantageously. Further research needs to be 
done to apply the filtering with SA and to combine the 
different nonlinear features in a single detector.  

ACKNOWLEDGEMENTS 

This work has been funded by the Natural Sciences and Engineering 
Research Council of Canada and the Research Chair in Signals and 
Intelligence of High Performance Systems.  

REFERENCES 

[1] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. 
Farmer, “Testing for nonlinearity in time series: the method of 
surrogate data,” Physica D: Nonlinear Phenomena, vol. 58, no. 
1-4, pp. 77–94, 1992. 

 
Fig. 6.  Results for ECG detection in noise for SA, HOS and 
normality tests. The threshold were set so that there is a 
Detection Rate (misclassified) of 5%. 

D
et

ec
ti

on
 R

at
e

 
(a) 

 
(b) 

Fig. 4.  Detection Rates of the normally distributed pulse in 
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normality tests are shown. 

 
Fig. 5.  SNR at 50% detection rate of the Normally Distributed 
Impulse according to the number of data points N for the four 
detection methods. 
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