
ATTENTION-BASED TRANSFER LEARNING FOR BRAIN-COMPUTER INTERFACE

Chuanqi Tan Fuchun Sun Tao Kong Bin Fang Wenchang Zhang

State Key Laboratory of Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology (TNList)

Department of Computer Science and Technology, Tsinghua University
{tcq15@mails, fcsun@mail, kt14@mails, fangbin@mail, zhangwc14@mails}.tsinghua.edu.cn

ABSTRACT

Different functional areas of the human brain play differ-
ent roles in brain activity, which has not been paid sufficient
research attention in the brain-computer interface (BCI) field.
This paper presents a new approach for electroencephalogra-
phy (EEG) classification that applies attention-based transfer
learning. Our approach considers the importance of differ-
ent brain functional areas to improve the accuracy of EEG
classification, and provides an additional way to automati-
cally identify brain functional areas associated with new ac-
tivities without the involvement of a medical professional. We
demonstrate empirically that our approach out-performs state-
of-the-art approaches in the task of EEG classification, and
the results of visualization indicate that our approach can de-
tect brain functional areas related to a certain task.

Index Terms— Attention Mechanism, Brain-computer
Interface, Transfer Learning, Adversarial Network

1. INTRODUCTION

Brain-computer interface (BCI) based systems can read the
brain information of the subject and decode it into instructions
for controlling an external device, thereby interacting more
naturally with the user. The key issue in BCI-based systems is
the accuracy of Electroencephalography (EEG) classification.

One of the most important problems in EEG classification
methods is that the relationship between the functional areas
of the human brain and the specific activities is not effectively
utilized. This problem makes it difficult to find key elec-
trodes with higher signal-to-noise ratios, therefore, it is dif-
ficult to obtain an effective EEG classifier. Medical research
has shown that the functional areas of the human brain have
strong regional correlation with specific activities. In the past,
when we designed BCI-based systems, we needed medical
experts to specify key electrodes involved in special activity.
For a new activity, it is difficult to construct a usability system
without the help of medical experts, which severely limits the
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Fig. 1. Overview of our approach. We applied ImageNet as
the source domain and EEG optical flow as the target domain
to an attention-based transfer learning framework. In addition
to obtain EEG label, it gets an extra attention map to reflect
the activity of the human brain.

applicability of BCI-based systems. It would be meaningful
to have a non-medical approach that automatically discovers
activity-related functional areas from brain signals. In addi-
tion, another key issue is the lack of training data. Because the
cost of biosignal acquisition and labeling is extremely high, it
is almost impossible to construct a large, high-quality EEG
signal dataset. It is difficult to train advanced classifiers with-
out sufficient training samples.

To solve these problems, we propose an attention-based
transfer learning framework that includes two main compo-
nents: a cross domain encoder and an attention-based decoder
with recurrent neural network (RNN). An overview of our ap-
proach is shown in Figure 1. A cross domain encoder has the
ability to transfer knowledge from natural images domain by
representing the original EEG signal in a new form - EEG
optical flow. It uses a large amount of training data in the
source domain (image classification) to help train the complex
feature extractor in the target domain (EEG classification),
which solves the problem of a lack of training data by us-
ing adversarial transfer learning. The feature extractor will be
transferred as knowledge to the target domain. An attention-
based decoder uses the attention mechanism to automatically
discover the weights of the brain functional areas, which ef-
fectively improves the accuracy of EEG classification. This
mechanism can reflect the brain functional areas related to a
specific activity and overcomes the reliance on medical ex-
perts when dealing with new activity.
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The main contributions of this paper are as follows: (1)
We introduce attention-based transfer learning to the EEG
classification task. (2) Our approach provides a novel way to
automatically discover brain functional areas associated with
new activities, reducing reliance on medical experts. (3) Ex-
periments show that our approach out-performs the state-of-
the-art approaches in an EEG classification task and verify the
usability of our approach.

2. RELATED WORK

Many works have been conducted to improve EEG classifica-
tion accuracy and a great variety of hand-designed features
have been proposed. With the rapid development of deep
learning in recent years, many excellent networks have been
presented by researchers. In recent years, many public works
have discussed deep learning applications in bioinformatics
research [1].

Transfer learning [2] and deep transfer learning [3] enable
the use of different domains, tasks, and distributions for train-
ing and testing. [4] reviewed the current state-of-the-art trans-
fer learning approaches in BCI. [5] proposed a novel EEG
representation that reduces the EEG classification problem to
an image classification problem that implicates the ability of
transfer learning. [6] transferred general features via a con-
volutional network across subjects and experiments. [7] eval-
uated the transferability between subjects by calculating dis-
tance and transferred knowledge in comparable feature spaces
to improve accuracy. [8] designed a deep transfer learning
framework which is suitable for transferring knowledge by
joint training.

[9] and [10] discussed whether the human visual system
has attention mechanism. [11] reviewed the recent works on
attention-based RNN and its application in computer vision,
and categorized the approaches into four classes: item-wise
soft attention, item-wise hard attention, location-wise hard
attention, and location-wise soft attention. [12] applied the
visual attention mechanism in an RNN network to obtain the
ability to extract information from images or video by adap-
tively selecting a sequence of regions or locations. In [13], an
attention-based model is applied to identify multiple objects
in an image by using reinforcement learning to identify the
most relevant regions of the input image. [12] demonstrated
that attention not only works on object detection tasks but
many other computer vision tasks like image classification.
[14] introduced an attention-based model to an image caption
task. [15] proposed to extract the feature vector by using the
intermediate layer of VGG, and the feature can be associated
with a specific region in the image through the network map.
In natural language processing tasks, [16] applied a soft atten-
tion mechanism to machine translation. [17] showed the lat-
est attention model Google use in machine translation, which
uses only attention without a convolutional neural network
(CNN) or an RNN in a traditional encoder-decoder model.

To the best of our knowledge, no researchers have at-
tempted to automatically discover brain functional areas as-
sociated with new activities.

3. METHOD

Our approach has a traditional encoder-decoder structure that
consists of two main components: a cross domain encoder
and an attention-based decoder.

3.1. Cross domain encoder

To obtain the ability of transfer learning, the raw EEG signal
was converted to a new representation - EEG optical flow,
which was proposed in our previous work [5]. Many benefits
can be gained from using the EEG optical flow. In particular,
EEG optical flow can enhance the ability of transfer learning
from natural images.

Many studies have demonstrated that the front layers in
a convolutional neural network (CNN) can extract the gen-
eral features of images, such as edges and corners. Therefore,
we were able to transfer the front layers of a CNN network
trained on ImageNet to extract the general features of the EEG
optical flow. However, the general feature extractor trained by
natural images does not fully match the EEG optical flow.

Inspired by generative adversarial nets (GAN), we apply
an adversarial network to train a better general feature extrac-
tor which is described in our previous work [8]. The pipeline
of adversarial transfer learning is shown in Figure 2.
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Fig. 2. Pipeline of adversarial transfer learning.Adversarial
network used to identify the origins of input features.

We use features extracted from natural images and the
EEG optical flow as the inputs for the adversarial network
and train it to identify their origins. If the adversarial network
achieves inferior performance, it indicates a small difference
between the two types of feature and better transferability, and
vice versa. It can be achieved by optimizing this loss function:

L = −
∑
k

I[y = k] log pk + αLadver + β<(v), (1)

where k is the number of categories, pk is the softmax value
of the classifier activations, Ladver is the cross entropy of the
adversarial network, <(v) is the regularization of manifold
constraints, and α and β are hyperparameters.

Manifold constraints force the learning algorithm to trans-
fer useful knowledge from the source domain and ignore the
knowledge which may destroy the manifold structure of the
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target domain. [18] demonstrated that keeping the geometric
structure can be reduced to the regularization of:

<(v) = 1

2

n∑
i,j=1

ζ(vi∗, vj∗)(W )ij (2)

where vi is the embedded representation of sample xi,
ζ(vi∗, vj∗) is the loss function to measure the euclidean dis-
tance of vi∗ and vj∗, (W )ij is the cosine similarity measure
of p− nearest neighbor in the adjacency matrix.

To train this adversarial network, we applied an itera-
tively optimizing algorithm with two steps, which has been
described in our previous work [8]. In this section, we have
introduced a cross domain encoder that extracts features suit-
able for both the source and target domains and obtains the
high-quality features of an EEG signal with help from natural
images.

3.2. Attention-based decoder

In this section, we use the features extracted by the cross
domain encoder to obtain the final EEG label and attention
map of the brain through the attention-based decoder. The
attention-based decoder is an RNN network, and we feed the
features obtained from each EEG optical flow frame into the
RNN network, and treat the output of the last timestamp as
the final EEG label.

In a traditional encoder-decoder network, the input of the
decoder is the output of the last fully connected layer of the
encoder, which raises a crucial problem. The features ex-
tracted from the last fully connected layer lose the location
information of the brain functional areas, so these features do
not reflect the importance of different brain functional areas
for specific activities.

Encouraged by recent works in computer vision and
neural language process, and inspired by recent success in
employing attention in these research works, we applied an
attention-based decoder that can attend to salient parts of an
EEG optical flow while carrying out EEG classification. The
attention mechanism provided a powerful tool to overcome
the important issue mentioned above. The location-wise
attention mechanism allows us to consider the weight of
different parts in the EEG optical flow, which reflect the dif-
ferent functional areas of the human brain. The pipeline of
our attention-based decoder is shown in Figure 3.

The encoder can obtain feature vectors of each EEG opti-
cal flow. In order to link the items in the feature vector to the
parts of the EEG optical flow one by one, we use the feature
map of the convolutional layer instead of the output of the
fully connected layer. Since a low-level feature retains more
information, it will be lost in the fully-connected layer. In this
way, we can extract L vector features of D dimension as fea-
ture vectors, each dimension of feature vector corresponding
to a part of the EEG optical flow, as shown in the following

equation:
a = {a1, ..., aL}, ai ∈ RD, (3)

where L is the number of frames and D is the number of
areas on the EEG optical flow. The items of feature vector
are linked to the spatial location of the EEG optical flow by
convolutional operation, which is demonstrated in Figure 4:

EEG optical flow

{a1, a2, ..., aL}

Fig. 4. Link between items in the feature vector and spatial
location of the EEG optical flow.

In the attention mechanism, we need to obtain the context
vector as the input of the RNN at each time t. The following
equations are applied to calculate the context vector: ẑt:

eti = fatt(ai, ht−1) (4)

αti =
exp(eti)∑L

k=1 exp(etk)
(5)

ẑt = φ({ai}, {αi}), (6)

where ht−1 is the hidden state of the previous step, fatt is
the map of a multilayer perceptron (MLP), eti is the output
of the MLP, αti is the attention weights and φ is the function
combining feature vectors and attention weights.

There are two types of attention mechanism, the soft at-
tention mechanism and the hard attention mechanism. The
main difference is the definition of the φ function. In the soft
attention mechanism, φ({ai}, {αi}) =

∑L
i αiai that means

all parts of the EEG optical flow will be considered in the con-
text vector ẑt. In the hard attention mechanism, φ is a function
that returns a sampled ai at every point in time according to
the multinouilli distribution parameterized by α .

The soft attention mechanism is a smooth function; it can
be solved directly by the back propagation algorithm, which
is equivalent to optimizing the following loss function:

L = −log(P (y|x)) + α

L∑
i

(1−
C∑
t

αti)
2. (7)

The hard attention mechanism is a non-smooth function that
can be approximated by the Monte Carlo algorithm.

4. EXPERIMENTS

We applied our approach to a dataset called Open Music Im-
agery Information Retrieval (OpenMIIR) [19]. OpenMIIR is
compiled during music perception and imagination, which in-
volves 10 subjects listening to and imagining 12 short music
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Fig. 3. Pipeline of attention-based decoder. First, the feature vectors that can maintain spatial information are produced by the
convolutional layers of the cross domain encoder. Then, they are combined with the location-wise attention mechanism on each
frame. Finally, these feature vectors are sent to the RNN network one by one to obtain the final EEG label.

fragments taken from well-known pieces. These signals were
recorded using 64 EEG electrodes at 512 Hz, and 240 trials
were recorded per subject. The following parameters were
used in our approach. We converted raw EEG signals into
EEG videos with thirteen frames and a resolution of 32*32.
These frames were converted to EEG optical flow with twelve
frames. We employed VGG16 and VGG19 [20] as the targets
of the cross domain encoder .

The OpenMIIR dataset does not distinguish between
training and test sets, so we randomly selected 10% of the
dataset to use as the test dataset. As the baseline, we tested
some recently proposed approaches: the deep neural network
(DNN) described in [19] and the CNN described in [21]. In
addition, we made comparisons to our previous work [8], that
without an attention mechanism. Experiments on the Open-
MIIR dataset were conducted to compare the performance
of our approach and that of the baseline approaches, and the
results are shown in Table 1.

Table 1. Classification accuracy (%) on the OpenMIIR
dataset and comparisons to the baseline approaches. For ex-
ample, the corner mark in Our(Soft+V GG16) refers to use of
the soft attention mechanism and application of the VGG16
network as the encoder.

[19] 27.22 [21] 27.80
[8]V GG16 32.08 [8]V GG19 35.00
Our(Soft+V GG16) 37.92 Our(Soft+V GG19) 36.67
Our(Hard+V GG16) 37.08 Our(Hard+V GG19) 35.84

As the results show in Table 1, the soft attention mecha-
nism achieves better classification results than the hard atten-
tion mechanism. One possible reason is that the soft attention
mechanism considers the interaction between multiple func-
tional areas, while the hard mechanism only considers one
functional area, as shown in Figure 5. Medical knowledge
tells us that the reflection of an activity in the brain is the re-
sult of a combination of multiple functional areas, which is
more in line with the soft attention mechanism.

We visualized an attention map while a subject was lis-
tening to an intense piece of music, as shown in Figure 6. It

(a) Soft (b) Hard

Fig. 5. Visualization of soft attention mechanism and hard
attention mechanism on the same frame.

was found that the learned weights of attention are somewhat
similar to the result from medical experts [22].

Fig. 6. Visualization of soft attention mechanism when listing
to an intense music fragment.

We can draw the following conclusions from the experi-
mental results presented in this section: (1) The experimen-
tal results shown in Table 1 demonstrate that our proposed
approach performs better than traditional approaches; (2)
VGG16 is a better choice for encoder than VGG19 in our
attention-based transfer learning for EEG classification task;
(3) The performance of the soft attention mechanism is bet-
ter than that of the hard attention mechanism; (4) Attention
mechanisms can be used to automatically discover brain
functional areas associated with new activities and reduce the
dependence on medical experts.

5. CONCLUSIONS

We propose a novel approach to improve the accuracy of EEG
classification in BCI. This approach takes advantage of the
medical fact that different brain functional areas play differ-
ent roles in activities. It applies an attention mechanism to
automatically assess the importance of functional areas of the
brain during activity. It can be concluded that our approach is
superior to other state-of-the-art approaches. In addition, our
approach can be used to automatically discover brain func-
tional areas associated with activities, which is very useful
when dealing with EEG data related to a new activity.
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