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Abstract— Objective: Motor imagery BCI based assistive
robotics solution has the potential to empower the upper
mobility independence of a disabled person. The objective
of this work was to compare the classification performance
of well-established classifiers with a novel prototype classi-
fier. Approach: We developed an adaptive decision surface
ADS classifier with the future objective to augment an
assistive robotic prosthetic hand to open and close to grasp
an object in cooperation with LIDAR sensors. The ADS was
trained with a training data set from the BCI competition IV
dataset 2a from Graz University of Technology.Main results:
The classification accuracy in the offline tests reached 76.06
% class 1 and 81.50 % class 2 using a non-adaptive ADS and
79.55 % class 1 and 99.69 % class 2 using an adaptive ADS
classifiers. We show a prototype adaptive decision classifier
used with motor imagery datasets.

I. INTRODUCTION

The possibility of detecting the changes in brain
activity following muscle movements such as moving
an arm or leg is well known in research as shown in
[1]. Changes in the cortex area of the brain occur when
a person moves their limbs can be detected with EEG
[2]. Sensorimotor rhythms associated with oscillations
in brain activity involving both sensory and motor
functions comprises:

u (7.5 - 12.5) Located over the motor cortex of the
brain are synchronized patterns of electrical activity
associated with a person’s voluntary movement such
as opening and closing your right hand.

B Range in frequency from (12 - 30 Hz) discov-
ered by Hans Berger he also invented EEG in 1924.
During early experiments, it was noticed that when a
person’s eyes were closed the alpha waves with neural
oscillation in 7.5 - 12.5 Hz reduced with movement
or imagined movement and open eyes. Moreover, the
alpha wave is replaced by the beta wave with reduced
amplitude and higher frequency was observed when
the person opened their eyes. Beta waves are associ-
ated with muscle movement furthermore beta waves
increase when a person is voluntarily suppressing or
resisting movement B Low Beta Waves (12.5 - 16 Hz)
associated with various levels of conciseness. 5 Beta
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Waves (16.5 - 20 Hz) associated with various levels
of conciseness. B High Beta Waves (20.5 - 28 Hz)
associated with various levels of conciseness.

These Sensorimotor rhythms can be detected in the
EEG during physical movement or imagined move-
ment [3]. Before a person moves there is a decrease in
u (7.5 -12.5) and B (12 - 30 Hz) rhythms in the cortical
area. The decrease is labeled as event-related desyn-
chronization (ERD). After the movement followed by
relaxation the rhythm increases and is known as event-
related synchronization (ERS) [3]. In addition, ERD and
ERS can occur by imagining the physical movement
[1], [4]. Hence an application in BCI can enable the
detection of a person intentions and therefore restore
physical movement via the BCI and assistive robotic
device. Furthermore, a BCI is able to detect an error-
related potential (ErrP) when those intentions are not
interpreted. Ang et al [5] showed a method for using a
filter bank common spatial patterns (FBCSP) algorithm
using 4 progressive stages that incorporated signal
processing and machine learning using EEG data from
the BCI competition 2008 Datasets 2a and 2b. The
filter bank [5] comprising Chebyshev Type II bandpass
filters, spatial filtering used a CSP algorithm, CSP
feature selection. A CSP projection matrix for each filter
band, the discriminative CSP features and the classifier
model labeling the training data according to the motor
imagery. The acquired parameters during the training
phase are used in the evaluation phase [5]. There are
other motor imagery data sets available, however, the
Graz dataset A is well known in the BCI research
community.

The remainder of this paper is organized as follows.
Section II describes the proposed method. Section III
presents the results followed by a discussion in Section
Iv.

II. METHODOLOGY

A disabled person unable to move their limbs such as
their arms, hands, feet like they used to do in the past
must be a debilitating condition. Previously the person
may have been fully able-bodied such that the person
will have learned during the early stages of their life
how to move their limbs. Having the prior skills of
physical movement the disabled person has the knowl-
edge in their brains. Supporting a person’s disability
can be achieved in the following steps. Firstly, with
this prior knowledge, a disabled person can imagine
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opening or closing their left or right hand. Secondly,
a brain-computer interface using motor imagery will
be able to determine the imagined movement. Finally,
an assistive device may support the disabled person’s
objectives.

A. MI-BCI Improving performance with Spatial filters

The purpose of spatial filters is to reduce unnecessary
spatial EEG electrical activity and highlight a particular
location of interest. In addition, the spatial filter will
maximize the signal to noise ratio such that accuracy
of EEG-based communication will be improved shown
in [6]. The classification process will benefit from the
improved EEG signal with a more accurate classifica-
tion.

B. Motor Imagery Adaptive decision surface(MI-ADS)
mathematical definition
Training set of vertices
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Fig. 1: Training data Class 1 and Class 2
Virain = {Cl/ CZ} (1)
where,
C; = Class 1, Right hand motor imagery
Cy = Class 2, Left hand motor imagery
Cl = {6‘1/6‘2/"10_;’1} (2)
Co = {91,%3,.., 0} 3)
Classification 1, Right hand motor imagery
je, € G 4

He, = (ﬁ) )

where,

fl = M featurel
f= Hfeature2

1 n
e = ) (6)
1=n
Classification 2, Left hand motor imagery

e, € G (7)

we, = (11 ®)
<f2>

where,

h= Hfeaturel
fo= Hfeature2

- 1 &
He, = )i ©)
1=n

The adaptive decision surface ADS represented by a 3
dimensional space

SCR? (10)

where,
S = [Xmins Xmax| X [Vmin, Ymax] X [Zmin, Zmax]| (11)
Ves 12)

A Bivariate Gaussian distribution data structure is pro-
jected on to S around ¢, € Cy and jic, € C;

C. Building ’Likelihood’ bias into the ADS model for motor
imagery

When the ADS is used for motor imagery the likeli-
hood is shown in Fig 2 The bias will be adaptable in a
future decision processing system.

ADS Model Surface + Likelihood Bias

.| Class 1 ADS Model (g Class 2 ADS Model
| Likelihood Bias Likelihood Bias
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Fig. 2: Adaptive Decision Surface ADS, incorporating
a 'Likelihood’ bias for motor imagery
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D. A constructed motor imagery adaptive decision surface III. RESULTS

model
A. Results from the motor imagery adaptive decision surface

MI ADS

The classification accuracy in the offline tests reached
76.06 % class 1 and 81.50 % using a non adaptive ADS
and 79.55 % class 1 and 99.69 % using an adaptive ADS

classifiers.
Classifier Class1 | Class2|
1| SWM Coarse Gaussian 8349 7716
2| Subspace discriminant 82 41 7762
Fig. 3: Trained motor-imagery adaptive decision surface 3| SVM Medium Gaussian 61.34 77.78
4| SWM Cubic 81.47 7778
5| SWM Linear 80.86 7917
6| SVM Quadratic B80.56 79.32
. ‘ 7| SWM Fine Gaussian 80.55 74.69
. | 8] KNN Weighted 7978 | 76.23
N , 9| Linear Discriminant (LDA) 79 63 79.01
: 10| Quadratic Discriminant{QDA) 79.63 7947
2 11|ADS Adaptive v3 79.55 99.69
12| Logistic Regression 917 79.94
13| KNN Cubic 78.24 83.95
’ 14| KNM Coarse 78.08 78.55
m 16| KNMN Medium 7.93 84 26
4 5 5 & R ‘ 16| KMNM Fine 77.62 7284
17| KNN Cosine 76 85 8195
Fig. 4: Trained motor-imagery adaptive decision surface 18 Ensgmble Bagged Tree 76.70 I1.78
with test data 19| Decision Tree Coarse 76.24 778
20(ADS None adaptive 76.07 81.50
21| Decision Tree Simple 7592 80.71
E. Adapting the surface of the ADS 22| Decision Tree Medium 7577 7855
The ADS classifier has the option to adapt the surface 23| Subspace KNN 67.44 76.08
during classification. After the acquisition of the input 24| Ensemble Boosted Tree 53.41 64.97
vector feature, the ADS will classify the unknown 25| RUSBoosted Trees 56 43 6744

vector. The adaptation will occur if the surface reading

is above a certain threshold for the particular class. Fig. 5: BCI competition IV dataset 2a from Graz Uni-

versity of Technology

Algorithm 1 Adaptive Decision Surface (ADS) Adapter

algorithm
1: A set of coefficients were estimated heuristically Classifier perf?_n:mance comparison
Class 1 threshold = thl L P ;
Class 2 threshold = th2 Cp— — !
2: Acquire the unknown feature coordinate ol T . i ik 4 *evesoen .T e 3
if AdaptiveDecisionsSurface > 0 then 70 3 : “.
Classify as class 1 *0 ; o
if AdaptiveDecisionsSurface > thresholdthl then iz """""""" Vo T i -
input feature coordinate o :
Plot a Gaussian scaled by c1GS on the ADS ,Fig 3 - ' ;
if AdaptiveDecisionsSurface < 0 then 10 : I
Classify as class 2 0 | ;
if AdﬂptiveDeCisiOnSSurfﬂCe < thresholdthz then 123456 78 81011121314151617181920212232332435
input feature coordinate oG] sz
Plot an inverted Gaussian scaled by 2GS on the i 6. BCI competition IV dataset 2a from Graz Uni-

ADS Fig 3 versity of Technology
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Motor imagery performance comparison
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Fig. 7: 25 Classifier MI performance comparison BCI
competition IV dataset 2a from Graz University of
Technology

IV. DISCUSSION

This paper showed a probability-based classifier for
improving motor imagery based BCI performance com-
pared with other classifiers. The classification accuracy
in the offline tests reached 76.06 % class 1 and 81.50 %
class 2 using a non-adaptive ADS and 79.55 % class 1
and 99.69 % class 2 using an adaptive ADS classifier.
Finally, a direction for future development an artifi-
cial intelligent controller and this classifier is shown
in Fig 9. This Al controller could decide to combine
proximity sensor data to augment certain features to
close the prosthetic hand on a nearby object Fig 8.
Other inputs such as electromyogram could be part of a
multi-modal input used by an Al controller. In addition
Al control may update the trained ADS classifier in the
event of error correction during usage.

- -

Fig. 8: Prosthetic hand with a LIDAR sensor.
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Fig. 9: BCI intelligent controller system.
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