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ABSTRACT

Functional Near-InfraRed Spectroscopy (fNIRS) has gained
widespread acceptance as a non-invasive neuroimaging modal-
ity for monitoring functional brain activities. fNIRS uses light
in the near infra-red spectrum (600-900 nm) to penetrate hu-
man brain tissues and estimates the oxygenation conditions
based on the proportion of light absorbed. In order to get
reliable results, artefacts and noise need to be separated from
fNIRS physiological signals. This paper focuses on remov-
ing motion-related artefacts. A new motion artefact removal
algorithm based on robust parameter estimation is proposed.
Results illustrate that the proposed algorithm can outper-
form the state-of-art algorithms in removing motion artefacts.
Moreover, the proposed algorithm is robust in estimating the
parameters under different interference conditions.

Index Terms— fNIRS, motion artefact removal, robust esti-
mation

1. INTRODUCTION

Functional Near Infrared Spectroscopy (fNIRS) is a non-
invasive neuroimaging modality for monitoring functional
brain activities [8, 23]. fNIRS exploits the property of ‘optical
window’ in which biological tissues are relatively transparent.
fNIRS uses light in the near infra-red spectrum (600-900nm)
to penetrate human brain tissue using optical sources and de-
tectors and estimates the brain oxygenation conditions [10].
fNIRS measures the changes of optical densities and calcu-
lates the concentration changes of oxyhaemoglobin (HbO)
and deoxyhaemoglobin (HbR) using modified Beer-Lambert
law (MBLL) [13]. fNIRS has the advantages of portable,
low-cost, and little restriction on movements compared to
other functional neuroimaging modalities. It is widely used
in cognitive studies, language development, infant monitoring
and other functional analyses [21].
fNIRS signals are subtle brain signals that reflect brain oxy-
genation conditions. Any interference or noise will cause
variations of the fNIRS signals. In fNIRS functional analyses,
signal preprocessing is essential in order to remove artefacts
and noise from the signals. Motion artefacts are considered
as one of the main types of signal artefacts in fNIRS signals

[3]. Motion-related artefacts arise from the movements of the
subjects’ heads or eyebrows, which will cause the changes in
blood circulation and the displacements between sources or
detectors and the scalp. In fNIRS, motion artefacts will lead
to sudden changes in the measured light intensities, and they
will affect the results of functional analyses [11].
A significant amount of research in fNIRS signal processing
in the past twenty years has been dedicated to motion arte-
fact removal. Existing motion artefact removal methods in-
clude artefact rejection or adaptive filtering, which typically
require additional hardware and probes. Alternatively, some
methods use existing data without requiring additional hard-
ware; such as Wiener filtering [4], Kalman filtering [5], Prin-
ciple Component Analysis (PCA) [22][14], Spline Interpola-
tion (SI) [12] and Discrete Wavelet Transformation (DWT)
[9]. Some methods take use of the HbO and HbR correla-
tion hypothesis, including Correlation-Based Signal Improve-
ment (CBSI) [2] and Independent Component Analysis (ICA)
[20]. More recently, the Transient Artifact Reduction Algo-
rithm (TARA) [16, 17] has been proposed to model signal
and motion artefacts by setting sparsity constraints on motion
artefacts.
In this paper, with the utilisation of artefact characteristics, we
propose a motion artefact removal algorithm based on robust
estimation with reduced basis functions and weighted param-
eter estimation method. We test the performance of the pro-
posed algorithm using experimental data. Results show that
the proposed algorithm can successfully remove or reduce
motion-related artefacts in the signals. More importantly, the
algorithm is robust under different interference conditions.
The rest of the paper is organised as follows. Section 2
presents the proposed motion artefact removal algorithm. In
Section 3, the results of the proposed algorithm are presented
and discussed. Finally, in Section 4, the conclusions are
presented.

2. PROPOSED ALGORITHM

2.1. fNIRS Model

The signal y represents a single-channel fNIRS signal mea-
suring the changes of concentrations in HbO or HbR. The
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vector y contains fNIRS haemodynamic response signal of
length N, where N represents the number of time stamps. The
signal can be modelled as in

y = x+ e, y,x, e ∈ RN (1)

where y, x, e represent the fNIRS detected signal (contains
artefacts), true physiological response, and artefact term.
The artefact term e contains motion artefacts and noise in
fNIRS signals. We consider the physiological effects caused
by the heart or respiration to be the global effects and they are
part of signal x. We model the motion artefacts as the summa-
tion of spike-shaped and square-shaped artefacts [16]. Spikes
represent short-term motion artefacts, while square functions
represent long-term artefacts. Our aim is to remove the arte-
fact term e by estimating the physiological signal x.

2.2. Problem Formulation

The physiological signal x can be represented by the linear
model

y = B θ + e (2)

where B is a basis matrix (N ×m) consisting m basis func-
tions. θ, of dimension (m × 1), represents unknown param-
eters that we want to estimate [1]. The inverse DCT matrix,
which is equivalent to the transpose of the forward DCT, de-
notes as the matrix B in (2). In the proposed algorithm, DCT
bases is used to represent different frequency components in
the signals [6].
To estimate the signal, we select the r highest DCT coeffi-
cients, where are denoted as θr ∈ Rr. Then the columns
corresponding to θr are selected from Bidct to form the re-
duced basis matrix Br. Br has the dimension of (N × r).
Therefore, (2) can be rewritten into

y = Br θr + e (3)

In order to remove long-term artefacts, we use the Difference-
Based Estimation (DBE) technique proposed in [18][19][15],
which uses the first-order difference of y to estimate θr

ỹ = B̃r θr + ẽ (4)

where ỹ, B̃r and ẽ represent the first-order differences for the
signal, basis matrix and noise respectively [18].

2.3. Parameter Estimation

Recall that the solution for (4) using Least-Squares (LS) esti-
mation can be represented as in

θ̂r−LS = (B̃>r B̃r)
−1B̃>r ỹ (5)

Based on our assumption of the motion artefacts, ẽ can be
represented as positive and negative spikes, which yields out-
liers in the histogram or probability density function of the

first-order signal difference ỹ. The LS solution in (5) is no
longer appropriate in estimating the parameters because of its
sensitivity to outliers.
In this paper, we obtain a robust estimate θ̂α by solving

θ̂α = argmin
h

Lα(θ) = argmin
θ

1

N − 1

N−1∑
i=1

ρα

{
ỹi − b>i θ

σ

}
(6)

where ρα is the robust loss function

ρα(v) = α−1
{
1− exp (−αv2/2)

}
, α > 0. (7)

For α = 0 the limit α → 0, this ρα(v) → ρ0(v) = v2/2
for any v ≥ 0, which corresponds to the familiar quadratic
loss Lα(θ) =

∑N−1
i=1 {(ỹi − b>i θ)

2/2σ2}. The quadratic
loss is described above for estimating θ but offer no protec-
tion against anomalous observations which could be frequent
in fNIRS. The general case with α 6= 0 corresponds to a
weighted estimation that tends to down weight the errors that
are far from the nominal density, thus removing outliers.
More insight can be gained by differentiating the objective
(8). This gives the weighted least squares estimating equa-
tions

0 =

N−1∑
i=1

wi(θ,B;α)
d

dθ

(
ỹi − b>i θ√

2σ

)2

(8)

where the weights are given by

wi(θ,B;α) = exp

{
−α
2

(
ỹi − b>i θ

σ

)2
}

(9)

In the special case α = 0, we have uniform weights w1 =
· · · = wN−1 = 1 and the corresponding estimator ĥ0 is just
the least squares estimator. On the other hand if α > 0, an
observation ỹi far from the mean b>i θ receives relatively low
weight compared to observations near the mean. Due to the
form of the weights, anomalous observations far from the bulk
of the data are automatically downweighted and have little
impact on the final estimate which makes the estimator robust
to outliers.
From now on it will be assumed that σ̂2 is known or has been
estimated previously using

σ̂2 =
1

N − 2

N−1∑
i=1

w̃i(θ̂,B;α)
(
ỹi − b>i θ

)2
where w̃i(θ̂,B;α) = wi(θ,B;α)/

∑N−1
i=1 wi(θ,B;α) is de-

fined in (9) or any other robust variance estimator [7]. In this
paper it is taken equal to one as this generates good results.

θ̂α = (B̃>r WB̃r)
−1B̃>r Wỹ (10)

where the weighted matrix W is the diagonal matrix with wi
being the diagonal entries.
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Note that the entries wi in W also depend on the values of
the parameter θ. Therefore, there is no close form solution
for θ̂α. Instead, the θ̂α can be calculated iteratively, where
initial value is obtained using LS.
The true fNIRS signal after motion artefact removal can be
estimated as

x̂θα = Brθ̂α (11)

2.4. Algorithm Integration

The proposed motion artefact removal algorithm is described
in Algorithm 1. Two parameters need to be defined in the pro-
posed algorithm, the number of basis functions selected from
the basis matrix (r) and the robust estimation turning parame-
ter (α). The value of r is related to how well the measured sig-
nal can be modelled using the basis functions. In practice, we
choose a certain percentage of the DCT coefficients and their
corresponding basis functions. The value of α is the tuning
parameter which controls the amount of artefacts or outliers
the algorithm can remove. α is tuned based on grid-search.

Algorithm 1 Proposed Motion Artefact Removal Algorithm

Input: y, Bdct, r, α
1: θdct = Bdct y
2: for n = 1 to r do
3: Find dn = index(max(θdct))
4: Br·n = B>dct·d
5: end for
6: for i = 1 to N-1 do
7: ỹi = y(i+ 1)− y(i)
8: B̃ri · = Br(i+1) · −Bri ·

9: end for
10: LS Solution θ̂LS = (B̃>r B̃r)

−1B̃>r ỹ
11: Define the i-th row of B̃r: B̃ri · = b̃i;
12: Starting with: θα = θ̂LS

13: for t = 1 to T Iterations do
14: wi,t = exp(−α(ỹi − b̃iθα)

2)
15: Wt = diag(wi,t)

16: Update θ̂α = (B̃>r WtB̃r)
−1B̃>r Wtỹ

17: end for
18: x̂θα = Brθ̂α
Output: θ̂α, x̂θα

3. RESULTS AND DISCUSSION

Resting-state fNIRS data was collected from young subjects
(ages ranging from 3 to 12 years old). Data was collected
using a NIRScout (NIRx) device at sampling frequency of
12.5Hz. One channel of HbO signal (N = 4, 500) is used
as the true resting-state data. The proposed algorithm can be
applied channel-by-channel for multi-channel HbO signals.

Simulated motion artefacts are added to the resting state
fNIRS data. In this example, we add six spike-shaped waves
and three square-shaped waves with randomly generated
amplitudes to the experimental signal in order to represent
motion artefacts. The chosen numbers of the additive motion
artefacts are used to simulate real movement conditions [16].
A windowing function is used to divide the experimental data
into smaller windows. Windowing is used to limit the num-
ber of bases in B as well as to reduce the computational com-
plexity. In this example, we choose window size W = 200,
within each contains approximately 20s signal. The reduced
basis coefficient is set to r = 0.1 ×W and the α coefficient
is set to α = 10. The parameters r and α are set based on
grid-search to obtain optimum results.
We compare the proposed algorithm with the state-of-art al-
gorithm TARA [16]. The authors introduced two TARA al-
gorithms which are used for convex and non-convex prob-
lems. We compare the proposed algorithm with both of the
two TARA algorithms, denoted as TARA and TARA (Non-
convex) in the figures. The example in Figure 1 shows a com-
parison between the proposed algorithm and TARA in remov-
ing motion artefacts. The description and implementation of
TARA can be found in [16] and the author’s homepage.
From Figure 1, both TARA and the proposed algorithm can
successfully remove most of the added artefacts. In this par-
ticular example, TARA and TARA (Non-Convex) can give
more precise results for the first n = 2,500 data points. How-
ever, after n = 2,500, TARA and TARA (Non-Convex) tend
to give inaccurate results due to the added motion artefacts.
That is mainly because TARA and TARA (Non-Convex) use
an indirect approach by estimating the motion artefacts and
then subtracting them from the measured signal. Our pro-
posed algorithm, on the other hand, estimates the parameters
directly and reconstructs the signals. For the proposed algo-
rithm, as shown in Figure 1, the frequency oscillations of the
estimated signal are preserved without losing any physiolog-
ical information. The signal being removed is mainly high
frequency noise which will not have impact on the physiolog-
ical analysis of the signal.
To evaluate robustness, we run the proposed algorithm and
TARA 100 times with randomly generated motion artefacts
and calculate the mean value and standard deviation of the
mean squared errors (MSEs). MSE measures the differences
between the true resting-state signals and reconstructed sig-
nals. MSE = 1

N

∑N
i=1(xi − x̂i)2.

Signal-to-Interference Ratio (SIR) is defined as the ratio of
the power of signal differences to the power of artefact differ-
ences (interference) SIR = 10 log(Px̃/Pẽ). The SIR between
the signal and motion artefacts is kept the same at SIR = 16
dB for all iterations. Within each iteration, motion artefacts
with different amplitudes are spread randomly over the exper-
imental data. MSEs are calculated by comparing the resting-
state experimental data before adding motion artefacts with
the estimated signal after applying motion artefact removal
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Fig. 1: Example results. Top: Experimental data (x) and experimental data with motion artefacts (y). Middle: Experimental data (x) and the estimated signal
from the proposed algorithm (x̂θα ). Bottom: Experimental data (x) and the estimated signal from the TARA and TARA (Non-Convex).

Table 1: The performance of the proposed algorithm under different conditions of SIR (MSEs).

SIR=20 dB SIR=18 dB SIR=16 dB SIR=14 dB SIR=10 dB

Mean 0.0041 0.0114 0.0209 0.0499 0.1539TARA Deviation 0.0040 0.0127 0.0150 0.0420 0.0917

Mean 0.0048 0.0119 0.0155 0.0440 0.1198TARA
(Non-Convex) Deviation 0.0060 0.0192 0.0159 0.0421 0.0999

Mean 0.0031 0.0034 0.0037 0.0043 0.0058Proposed Deviation 0.0001 0.0002 0.0002 0.0004 0.0006

 0.020876
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Fig. 2: Mean and standard deviation of MSEs for TARA, TARA (Non-
Convex) and the proposed algorithm using experimental data. The bar chart
represent the mean values of MSEs, the error bars along each bars represent
the standard deviation of MSEs.

algorithms.

The results of the mean and standard deviation values of
MSEs for the proposed algorithm and TARA are shown in
Figure 2. TARA, TARA (Non-Convex) and the proposed
algorithm have the mean values of MSEs of 0.0209, 0.0155
and 0.0037, respectively. The proposed algorithm achieves
the best performance among all three algorithms in removing
motion artefacts. Moreover, the robustness of the proposed
algorithm is more prominent from Figure 2, the standard
derivation of the proposed algorithm is insignificant. Results

show that the proposed algorithm is more robust and stable
compared to other algorithms, the shapes of the artefacts
do not affect the performance of the proposed algorithm. Al-
though for some cases TARA (Non-Convex) has better results
in removing the motion artefacts, however, the algorithm is
not robust and cannot be applied to general cases because of
the high standard deviation.
We also compare the performance of the proposed algorithm
for different interference conditions (SIRs). The results for
performance comparison are shown in Table 1. Different SIR
conditions denote different levels of motion artefacts. It is
shown in Table 1 that under different SIRs, the proposed algo-
rithm can achieve the best results with the lowest mean MSEs
and standard derivations among all three algorithms.

4. CONCLUSION

In order to remove motion-related artefacts in fNIRS signals,
a robust motion artefact removal algorithm is proposed in this
paper. The proposed algorithm combines reduced basis func-
tions with robust parameter estimation. We evaluate the per-
formance using experimental fNIRS data with the added mo-
tion artefacts. Results show that the proposed algorithm can
achieve good results in motion artefact removal performance
and as well as robustness. Future work will focus on applying
the proposed algorithm to signals with real motion artefacts
and refining the parameter tuning in the proposed algorithm.
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