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ABSTRACT

The human nervous systems is a complex network, which
consists of neurons interacting with each other through a
hybrid electro-chemical communication called neuro-spike
communications. A first building-block in network analysis
of the neuro-spike nano-network is multiple-input-single-
output (MISO) diversity scheme. Thus, in this paper, we
consider a MISO transmission in a axonal-synaptic channels.
In addition, for the first time, we model axonal noise as a
binary X-channel. We derive error probability in a system
consisting of axonal and synaptic noises, random channel and
random vesicle release in a network with multiple transmit-
ting synapses.

1. INTRODUCTION

Neuro-spike communication, also known as neuro-synaptic
communication, is a biological communication system in hu-
man nervous system including brain and sensory neurons.
This nano-scale communication is a hybrid model consisting
of molecular communication by releasing chemical messen-
gers called neuro-transmitters in synapses and electric signal
transmission via transmission of impulses in axons. In this
paper, we analyze the error probability of this biological sys-
tem and offer insight on its performance.

Based on neuroscience studies (see, e.g., [1,2]), the per-
formance of the optimum detector is affected by axonal
noise. Although what nature does may not be optimum, the
real synaptic detector is still adversely affected by axonal
and synaptic noises. The existence of axonal noise is more
prevail in thinner and longer neurons. Exploiting biophysical
theory and stochastic simulations demonstrated that in central
neuron system, axons of 0.1-0.5mm diameter, axonal noise
is more prevail in action potential propagation [1]. Thus, the
variability in postsynaptic responses that outcomes from the
axonal channel noise is raised in the longer and thinner axons.
In addition, based on realistic data collected from neocortex,
authors in [3] showed that single cortical synapses cannot
transmit information reliably. Therefore, in central nervous
system synapses, multiple synapses should collectively trans-
mit the same information, and in this way, the information
capacity of axonal-synaptic channel is significantly improved.

In this paper, we consider a axonal-synaptic channel
consisting of multiple transmitting synapses and a single
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receiving synapse. We assume that transmitted spike-like sig-
nals are impaired by several degradations such as stochastic
vesicle release, variable amplitude, and axonal and synap-
tic noises. Unlike the recent work in [4] that considered a
single-input single-output (SISO) scenario, in this work, we
assume multiple synapses that collectively transmit the data.
In addition, our works differs from [4] in modeling of axonal
noise, and here, we model both events of erroneous spikes
and removal of spikes. Next, we analyze the performance
of the system by deriving analytic expressions for proba-
bility of error at the receiving neuron. More specifically,
we derive a closed-form formula for the probability density
function (PDF) of MISO axonal-synaptic channel. Then, we
derive analytical expressions for likelihood function and error
probability of an optimum detector at the receiving neurons.

2. AXONAL-SYNAPTIC CHANNEL MODEL

We consider a mathematical channel model for the axonal-
synaptic communication nervous system, which is located be-
tween the transmitting neuron and receiving neuron in central
neural synapses. The generated spike signal is denoted by
z(t), which consist of random wide-band narrow spikes. Due
to refractory effect, similar to [3-5], the spike train can be
modeled as binary communication. The binary random vari-
able S is defined, in which S = 0 represents the event that
there is no spike in the given time, and S' = 1 otherwise. The
signal z(t) with spike-like pulses is generated by encoding
the binary random process.

Similar to [4] and [6], we model the axonal noise as a
binary random process. It is assumed that at a given time,
one erroneous spike occurs with probability of p,. Further-
more, here, we generalize the modeling of the axonal noise
to consider the removal of a spike with probability of py, as
well as the occurrence of an erroneous spike with probability
pe- That is, we consider the case that a spike disappears with
probability of p, due to negative voltage caused by random
closing of ion channels. Thus, the axonal noise in this paper
is modeled as X-channel model.

The output of axonal noise block at a given time can be
denoted by a binary random variable U. In addition, the con-
taminated spike train with axonal noise is called u(t). Due
to refractory effect, similar to [3-5], the spike train z(t) can
be divided into bins of size Ty. The event U = 1 means that
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there is one spike in a bin with probability of

P{U =1} =P{S =1}(1 — p») + po P{S = 0}

=1- Pb — Pprior + DPbPprior + PaPprior- (1)
where pprior = P{S = 0} is the prior probability of the input
spike.

3. NEURO-SPIKE SYSTEM WITH MULTIPLE
SYNAPSES

Next, we consider multiple synapses at the transmitter side.
When presynaptic signals are related to the same information
source, they are summing up constructively, and it is called
cooperative synaptic communications. Thus, we consider the
case that we have multiple synapses cooperatively transmit-
ting their data toward a single postsynaptic terminal. Note
that this is a practical assumption since the value of the vesi-
cle release probability p,, is low in practice. Hence, to transfer
the information reliably, the cooperative transmission by neu-
rons is inevitable.

To get the spatial diversity gain due to the cooperative
multiple synaptic case, we calculate the optimal decision
strategy. The postsynaptic membrane voltage of the coopera-
tive synaptic communication when a spike is transmitted, i.e.,
S =1, becomes

M
Ym|s= 1 Z U Vi o w t) + e(t)7 )
m=1

where M is the number of independent parallel synapses, V,,,
is a Bernoulli random variable representing the vesicle release
process at the m-th synapse with the probability of p, for
V. = 1, and e(¢) is additive white Gaussian noise at the re-
ceiving neuron. Moreover, U?, is a Bernoulli random variable
representing the conditional axonal noise where U2, = 0 is
the event that one spike has disappeared at the m-th synapse
with probability of p,. Note that we assumed that the same
type of receptors is used for all synaptic connections. Hence,
the excitatory postsynaptic potential (EPSP) pulse-shape w(t)
is the same for all summation terms in (2) and is represented
by [3]

wmax t

w(t) = T

Xp (1 - t/Tmax) ) (3)
for t > 0, where wyax and T}, represent the maximum
value of the pulse shape and its corresponding time, respec-
tively. In addition, the random variable h,, in (2) is the EPSP
variable quantal amplitude of the m-th synaptic connection.
It is shown in [7] that the amplitude distribution is optimally
fitted with a kth-order Gamma distribution.

Proposition 1. Considering a set of independent k-th order
Gamma random variables H = {hy,--- ,har} with mean
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and variance of X and o?, respectively, and a set of indepen-
dent Bernoulli random variablesV = {V,- -+ , Vs } with pa-
rameter p, and U® = {U},--- ,U%,} with parameter 1 — py,
the PDF of the summation of independent Gamma distributed
random variables, i.e., H g/[ = Z%zl Uﬁle hp, is given by

Jl\)/I h) = (1 — DPv +pvpb)M5(h) + e il

Xi MY\ (1= pp)"py (1 = py + popp)™ k™ 1
— (km —1)! ‘
C))
where ;1 = M o2, k= \2/o2.
Proof. The proof is given in Appendix I. O

Note that the discrete mass probability in f4,(h) at h = 0
is due to the fact that we combined the continuous random
variable h,,, with discrete channels of axonal noise and vesicle
release.

4. ANALYSIS OF THE SIGNAL DETECTION

Now, we formulate the binary detection problem at the receiv-
ing neuron by the following hypothesis test:
Zm 1 Ua V h w(t) + e(t)v

Ho :
H1 : Z U va h w(t) + e(t)a

where Hyg and H; refer to the hypotheses of no spike trans-
mission event, i.e., S = 0, and spike transmission event, i.e.,
S = 1, respectively. Note that in (5), U}, is a Bernoulli ran-
dom variable representing the conditional axonal noise where
U2 = 1 is the event that one spike is created at the m-th
synapse with probability of p, when S = 0.

Since the aggregated amplitude H' 54 = Z U ,an hom,
of the transmitted signal under H; is random, we employ the
composite hypothesis testing used in detection of signals with
unknown parameters [8]. Conditioned on {hy, -, hp},
Vi, -+, Vi), {U%, - UY} and {UE,--- U}, the re-
ceived signal yps(t) has a Gaussian distribution under both
hypotheses.

Now, by defining the likelihood ratio, denoted by Ag(y),
as the ratio of the PDF of y(¢) conditioned on H; and Hp,
respectively, and by using [8, p. 65], we have

E{exp ( [Ty () di+2HY, IRIU w(t)y(t)dt—Hy > By )}
As(y)= 7
]E{exp (7 f“ y2(t)di+2HY, fo w(t)y(t)dt—HE 2B, )}

(6)

Ynm)s=o(t) =

5
ym)s=1(t) = ©)

where E{-} denotes the expectation operation, NNy is the vari-
ance of e(t) and HY, = Z%:l U& Vi, by, is defined as the
aggregated amplitude of the transmitted signal under Hy. In



addition, in (6), Ty denotes the refractory period between ad-
jacent spikes [3] and E,, = OTf w?(t) dt is the energy of the
EPSP response w(t). From (3), and by considering w(t) is

zero outside the refractory period of length 7', we have

2,2 too .,
By & ET“Q’maX / eTmax t2dt = Ty Whoy.  (7)
max 0
Next, the likelihood ratio in (6) can be written as
157 for(hy) exp (42 - C(%O_thw*) dhy
AS(y) 2hg c(y)—h2E, ®)
Iy Fiy(ha) exp (Rhecy=tile ) gp,
where c(y) = [, w(t)y(t)dt, and f§;(h,) stands for the

PDF of H{,. Similar to Proposition 1, the PDF of H§,
derived as

can be

fir(h) = (1= pupa)™(h) + e "
M )
mom (1 _ v ajwfm km
<3 M pa'wy (1= popa) """ 1 ©)
m (km —1)!
m=1
Combining (4), (8), and (9), we have
2hc(y)—h2Ey
¢?\4+Zm 1 (km 1)’ fO hkm 1 - h R
AS(y N 0, 1 A 2hc(y)—h2Ey
(‘pM—"_Zm:l (kal)! jO hkm—le—phe No
(10)
where ¢, = (1 — p,pa)M, &%, = (1 — py + popp)™, and
a M m, 1 —m m
oy, = ( )pa Py (1= pupa) ™A,
M A —r m
v, = (m ) (1 =)™y (1= po + popp) AR

From [9, Eq. 3.462], the closed-form solution for the in-
tegrals in (10) can be obtained as

M No—2c
As(y) = M #No—2c(y)
P+ iy O TR Oy (M)
(11)
—km/2 hm/2
where 0%, = W}, (21%0) +Om = W ( N ) and

C(+) is the parabolic cylinder functlon of order k [9, Eq.
9.240].

The variable amplitude h with distribution of f(h) in (4)
has the parameter %k [3]. For the case of £k = 1 and M = 1,
this distribution has the highest variability, and Ag(y) in (11)
can be simplified to

2
43[{ (1 _ pb)pv,u NU7T ‘(“NSNOQLSUM) Q( l‘évol:fjg(j/))
AS(y) = ~ (uNg—2c(1))? No—2(y)
DY + papott 077 NoBw Q( ) 0/7N0Ew )
(12)
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Fig. 1. The probability of error curves versus the SNR ra-
tio for different values of axonal noise parameters in a SISO
channel with k =1, M =1, and p, = 0.4.

where Q(y) = 1/v21 f;o e=°"/2da is the g-function.

Now, we investigate the probability of error of spike de-
tection at the receiving neuron.

The average probability of error of the hypothesis test in
(5) can be written as

+(1

where pyrior = P{S = 0} is the prior probability of hypothesis
Hy. The probability P of selecting hypothesis H; when Hg
is correct is called false detection probability and is calculated
as

Pcrror :ppriorPfalsc - pprior)Pmiss (13)

Prige = P{R = 1|S = 0} = P{As(y) > A0|S = 0} (14)

where R = 1 denoted the event that spike is detected at the
optimal detector output, and the critical threshold A is given
by Ag = Dprior/ (1 — Dprior). In addition, the probability Ppiss
of selecting hypothesis Hy when H; is correct is called miss-
detection probability and is calculated as

Priss = P{R = 0|S = 1} = P{As(y) < Ao[S =1} (15)

where R = 0 denoted the event that spike is not detected at
the optimal detector output.

The likelihood ratio A 5( ) in (11) is a function of random
variable c¢(y jo t)dt. Hence, the cumulative dis-
tribution functlon of AS( ) can be expressed in term of the
cumulative distribution function of ¢(y). If S = 0, we have
c(y) = EwH$§; + eour, Where eqye becomes a white Gaussian
noise and the distribution of H§, is given in (9). In addi-
tion, if S = 1, we have ¢(y) = EwH]l(/I + €eout, Which is the
summation of the random variable with the PDF in (4) and a
Gaussian random variable with zero-mean.
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Fig. 2. The probability of error curves versus the SNR ratio
for different number of synapses and different values of ax-
onal noise parameters in a channel with ¥ = 1 and p, = 0.4.

5. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate
the performance of analytic results derived in previous sec-
tions. The parameters of variable of amplitude with Gamma
distribution are given as mean A = 1 and k¥ = 1. Similar
to [3], we assume a pulse shape given in (3) with wpax = 2
mV and T}, = 1 msec.

In Fig. 1, the performance of SISO neuro-synaptic chan-
nels under different axonal noise values, modeled by a binary
X-channel, are investigated. The average probability of er-
ror curves versus the signal-to-noise (SNR), i.e., E,, /Ny, are
shown for different values of axonal shot noise parameters p,
and py,, when synaptic release probability is fixed to p, = 0.4
and the variable quantal amplitude with Gamma distribution
parameter is assumed as £ = 1. As it can be seen, the ax-
onal noise can considerably degrade the performance of the
system. For instance, it is shown that at P, = 0.36, more
than 12 dB more SNR is required when there is axonal noise
with probability of 0.1, compared to a system with no axonal
noise, in a channel. In addition, one can observe that erro-
neous spike event represented by probability p, and removal
of spike event have almost the same effect on the system per-
formance.

As it is stated in Section I, due to the small value of synap-
tic release probability and other impairments, in reality, mul-
tiple number of synapses are employed to transmit the data to
the receiving neuron. Thus, in Fig. 2, we investigate the effect
of multiple synapses transmission on the system performance.
It can be seen that using more synapses (M = 2,4) lead to
significantly lower probabilities of error for all three cases of
[Pa = 0,pp = 0], [pa = 0.1,pp = 0], [pe = 0,pp, = 0.1] and
under all SNR conditions. By asymptotic analysis in high
SNR conditions, it can be shown that diversity order of M is
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achievable when there are M cooperating synapses.

6. CONCLUSION

In this paper, we investigated the performance of the neuro-
synaptic communication with multiple synapses under several
random degradations such as stochastic vesicle release, vari-
able amplitude, and axonal and synaptic noises. For the first
time, we modeled axonal noise as binary X-channel. In addi-
tion, we extended axonal-synaptic channels to more realistic
model of MISO scheme. We derived a closed-form formula
for the PDF of MISO axonal-synaptic channel. Then, we de-
rived analytical expressions for likelihood function and error
probability of an optimum detector at the receiving neurons.
Furthermore, the impact of axonal noise on the performance
of MISO neuro-synaptic channels are investigated by simula-
tions.

7. APPENDIX: PROOF OF PROPOSITION 1

)\k

The PDF of Ay, is given as f(h) = 2 RF=L exp (—ph).
From [10], it can be shown that, for a fixed value of M,
called My, the sum of independent Gamma-distributed ran-
dom variables with the same parameter y and of order km
is again a Gamma distributed random variable with the order
Zf\fozl km. Therefore, we have

kMo

plMo—1

o (h M) = —-

My = 1) (16)

exp (—ph).

Since U};L and V,,, are two independent random Bernoulli
variables, their product becomes another Bernoulli variable
with the following parameter

P{U} Vi =1} = (1 = py)po.

Now, by defining My = Z%zl Ub V., it is clear that it has
a binomial distribution with the following probability mass
distribution

P{My = m} — (M

m

a7

) (1= pp)™ P (1 — py + pupp)™ ™.

Hence, using the law of total probability, we have

M
fri(h) =Y P{Mo = m} far(h |m)
m=0 y
= (1= po+popy)™6(h) + Y P{Mo = m} far(h|m)

= (1= py + pops)M5(h) + e "

X i MY (1= pp)"py (1= po + popp) ™" ™
= \m (km —1)!

(18)
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