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ABSTRACT

This work aims to develop an end-to-end solution for
seizure onset detection. We design the SeizNet, a Convo-
lutional Neural Network for seizure detection. To compare
SeizNet with traditional machine learning approach, a base-
line classifier is implemented using spectrum band power
features with Support Vector Machines (BPsvm). We explore
the possibility to use the least number of channels for ac-
curate seizure detection by evaluating SeizNet and BPsvm
approaches using all channels and two channels settings re-
spectively. EEG Data is acquired from 29 pediatric patients
admitted to KK Woman’s and Children’s Hospital who were
diagnosed as typical absence seizures. We conduct leave-one-
out cross validation for all subjects. Using full channel data,
BPsvm yields a sensitivity of 86.6% and 0.84 false alarm (per
hour) while SeizNet yields overall sensitivity of 95.8 % with
0.17 false alarm. More interestingly, two channels seizNet
outperforms full channel BPsvm with a sensitivity of 93.3%
and 0.58 false alarm. We further investigate interpretability of
SeizNet by decoding the filters learned along convolutional
layers. Seizure-like characteristics can be clearly observed in
the filters from third and forth convolutional layers.

1. INTRODUCTION

Monitoring brain activity through EEG is critical for epilepsy
diagnosis. To capture seizure events that may occur sparsely,
neurologists have to visually scan vast amount of EEG data.
The process is extremely time consuming and may be subjec-
tive due to inter observer variance. Computer aided seizure
detection approach would serve as valuable clinical tool for
the scrutiny of EEG data in an objective and much more effi-
cient manner.

Traditional machine learning approaches for seizure de-
tection usually composite three stages: data pre-processing
to eliminate artifacts, followed by feature extraction and
decision-making. A number of features have been identified

*Corresponding author. #The work was carried out under SIPGA schol-
arship from Agency for Science, Technology and Research (A*STAR), Sin-
gapore.

to describe the behavior of seizures, including those based
on time-domain, frequency-domain, time-frequency analysis,
wavelet features and chaotic features such as entropy etc. A
pioneer work was presented in [1], which created subject-
specific seizure onset detection model using hand-crafted
features extracted from the raw EEG data followed by clas-
sification. The subject-specific model reaches a sensitivity
of 96% and false alarm rate of 0.08 per hour on CHB-MIT
dataset by using SVM over a combination of spectral, spatial
and temporal features.

The extracted features are believed to contain discrimi-
native information for systems to differentiate seizure from
non-seizure states. Feature space are highly compact as com-
pare to raw EEG data space which is critical when computing
power is limited. Furthermore, the features may bring inter-
pretability for a machine learning system. However, there are
limitations for such seizure detection methods. Firstly, ex-
tracting features from raw data may induce information loss.
Secondly, the standard power band analysis splitting the spec-
trum bands (delta 0-4Hz, theta 4-8Hz etc.) could not take into
consideration individual variance of spectrum distributions.
Finally, hand crafted feature extraction brings extra computa-
tional complexity for real-time applications.

Deep learning (DL) solves such problems by represen-
tation learning which enables computer to learn high level
features from raw data without human interference. Recent
advances in DL such as batch normalization [2], dropout [3]
and various new network structures have largely prompted
the applications for DL in real world problems and some
have achieved near human-like performance. Various DL ap-
proaches have been proposed for seizure detection. Hugle et.
al. [4] proposed a Convolutional neural network (CNN) de-
signed for implantable microcontroller by using only 4 elec-
trodes selected a priori by expert. Ullah and colleagues [5] de-
veloped a pyramid CNN, and a typical 13-layer CNN model
is created in [6], both using Bonn University database [7]
which has only 3.27 hours of EEG data. The latter deep CNN
structure has about 100k parameters, however neither dropout
nor batch normalization is used to regularize the deep CNN.
As a result, they could not reach the state-of-art performance
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achieved by machine learning approaches using hand crafted
features.

In this work, we aim to develop an end-to-end solution
for seizure onset detection. A CNN structure called seizNet
is carefully designed to enable an efficient and effective repre-
sentative learning for seizure onset detection, equipped with
dropout and batch normalization to prevent overfitting for a
more generalized solution. We explore the possibility to use
least number of channels for accurate detection across sub-
jects. Finally, we attempt to interpret the model by discov-
ering signatures hidden in the filters from different convolu-
tional layers.

2. METHOD

2.1. Baseline method – BPsvm

We develop a SVM-based classifier using hand crafted spec-
trum band power features, called BPsvm. Frequency spec-
trum components within the 0-25 Hz band is considered, as
suggested by [8]. In this study, we preserve the 5-second
epoch for analysis across different approaches. To obtain fea-
tures in higher resolution, we split the 5-second epoch into
5 1-second windows for spectrum transformation and band
power feature extraction. In Shoeb’s work [1], 8 bands from
0.5-24 Hz are chosen. As our window size is 1 second, the
lowest frequency we can analyze is 1 Hz, therefore sub-bands
are defined as [1-3, 3-6, 6-9, 9-12, 12-15, 15-18, 18-21, 21-
24] Hz. Spectrum band power feature in the sub-band sig-
nals on every 1-second are calculated and then concatenated
into one instance for every 5-second epoch. Afterwards, SVM
classifier is trained based on extracted features by using radial
basis function (RBF) kernel.

2.2. Deep learning method – SeizNet

We develop a deep CNN network named SeizNet for end-
to-end seizure detection solution. Comparing to [6], SeizNet
contains additional dropout layers [3] and batch normaliza-
tion [2] after every convolution layer. Such layers are de-
signed to avoid model overfitting. Unlike the typical usage of
dropout which is only after fully connected layer, we used
dropout in various parts of the model as it is indeed sug-
gested by the inventors of dropout [3]. The number of filter
at each convolution layer is multiplied by two every time like
VGGNet [9]. It enables SeizNet to have less number of fil-
ters at low levels in which filters learn basic shapes, while to
have more filters at the higher levels where filters are capable
of grasping sophisticated patterns. As an activation function
ReLU is used and other hyper-parameters of the model such
as number of filters and filter sizes at each layer as well as
number of unit in the fully connected layer are cross-validated
over a broad range. Detailed architecture of SeizNet can be
found in table 1. The total number of parameters for SeizNet-

2chn and SeizNet-18chn are 200,592 and 201,872 respec-
tively, both include 240 non-trainable parameters.

Table 1. SeizNet Architecture
Layer Output

Input (1000×n∗) (1×1000×n)
Conv 1 8×Conv2D(1×10) (1×991×8)

MaxPool2D (1×2) (1×495×8)
Dropout(0.2) (1×495×8)

Conv 2 16×Conv2D(1×10) (1×486×16)
MaxPool2D (1×2) (1×243×16)
Dropout (0.2) (1×243×16)

Conv 3 32×Conv2D(1×10) (1×224×32)
MaxPool2D (1×2) (1×112×32)
Dropout (0.2) (1×112×32)

Conv 4 64×Conv2D(1×10) (1×93×64)
MaxPool2D (1×2) (1×46×64)
Dropout (0.2) (1×46×64)

Flatten Flatten (2944)
Dense (50) 50
Dropout (0.5) (50)

Output Dense (2) (2)
*n=2 for 2-channel data, n=18 for 18-channel data

We conduct leave-one-subject-out cross validation to
evaluate our model. For training, we use Adam [10] opti-
mizer with a learning rate of 4.1e− 3, binary cross entropy
loss function and batch size of 128. We explored early-
stopping [11] approach by randomly selecting 20% of train-
ing data as our validation set. However, it is observed that
SeizNet does not overfit due to the effect of aggressive reg-
ularization, namely dropout and batch normalization applied
after every convolution layer. Therefore, 100 iterations have
been decided to execute without any validation split. It also
enables us to take advantage of all the data which possibly
affects the performance since deep learning approaches for
BCI problems are often deprived of big datasets.

2.3. Filter Decoding for SeizNet interpretation

CNNs extract spatial features hierarchically in a modular way
throughout convolution layers, the filters decompose the in-
put space to set a mapping between abstract features and la-
bels. Decoding such filters help us discern what decomposed
components are, thereby how CNNs work. One technique
to fathom the characterization of hidden units is visualizing
sample inputs that maximize the selected units. A pioneer
method, Activation Maximization (AM) proposed by Erhan
in 2009 [12] has turned this technique into an optimization
problem yielding artificial inputs that maximally activate any
chosen hidden unit/units by gradient ascent rather than select-
ing from the data set which is shown to be problematic and
inadequate in the sense of leading a conclusion. Furthermore,
its consistency has been shown with different initializations
producing mostly same salient features at the input [12].

To date, AM has been widely used to decode abstract spa-
tial filters and to make qualitative interpretations of CNNs. It
was first applied by [13] to the AlexNet [14], known as first
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modern CNN architecture as well as to the others such as VG-
GNet [9], GoogleNet [15] etc.

3. EXPERIMENT AND RESULT

3.1. Seizure EEG data and Pre-processing

Data used in this study is from KK Women’s and Children’s
Hospital, Singapore. IRB was acquired from the hospital re-
view board. EEG data of 29 pediatric patients diagnosed
with typical absence seizures are included in this study.
The data are extracted from Nikon Kohden EEG-1200K
and EEG-9100K recording systems (reading setting: Cal
Voltage=50µV , HFF=70Hz, LFF=0.53Hz, Sensitivity=7 −
10µV/mm, sampling rate=200 or 500Hz). The length of
patients’ EEG recordings range from 25 to 66 minutes. In
total the data contains 1037.6 minutes of EEG recording with
24.95 minutes seizure data distributed among 120 seizure
onsets. EEG data is down-sampled to 200 Hz across all sub-
jects. Data from all channels for each subject is z-normalized.
Window size of 5 second is chosen and preserved for all the
methods in order to obtain a conclusive comparison based on
performance metrics. A common problem in CNN networks
for seizure detection is that datasets are often imbalanced
meaning interictal phases outnumber the ictal phases by a
wide margin and it has been shown that imbalanced datasets
lead to statistically significant performance drop in CNN ar-
chitectures [16]. To overcome this issue, a data augmentation
method during pre-preprocessing is preferred rather than un-
dersampling or oversampling. To increase the number of ictal
phases, sliding is applied with different overlapping propor-
tions according to existence or absence of seizure. While
shifting with 5 seconds (no overlapping) is implemented to
create interictal class, 0.075 second shifting is used for ictal
class to create balanced input for the SeizNet. For BPsvm,
however, no such technique is applied since SVM is shown to
be robust against imbalanced datasets [17].

3.2. Experiment Settings and Performance Metrics

We compared result of four experimental settings including
18-channel SVM, 18-channel CNN, 2-channel SVM and 2-
channel CNN respectively. Performance of the seizure detec-
tion algorithms are assessed with sensitivity and false alarm
rate by the community [18] and often extended with latency
in order to make more comprehensive analysis across detector
algorithms. The definitions are described as follows:

Sensitivity(%): Proportion of seizures correctly detected
False alarm rate(fp/h): Number of false positive seizures per hour

Latency(second): Delay between electrographic onset and detection

While BPsvm yields determinate results, seizNet models
produce different result in every round, due to random initial-
ization. To evaluate the result objectively, ten tests have been
carried out for both seizNet-2-chn and seizNet-18-chn mod-
els, and most frequent result which statistically corresponds

to the mode of sensitivity and false alarm is chosen as a final
result for each subject.

3.3. Results

Results obtained from different experimental settings can be
found in Table 2. In both BPsvm and seizNet, models using
18-chn reduce false alarms with a boost in sensitivity com-
pare to the 2-chn models. But to our surprise, SeizNet-2-chn
model despite using much less number of channels, outper-
forms BPsvm-18-chn model for all performance metrics mea-
sured.

Table 2. Comparison of Performance Metrics
Model BPsvm SeizNet
Channel used 2-chn 18-chn 2-chn 18-chn
Seizure detected 104/120 108/120 112/120 115/120
Sensitivity (%) 86.6% 90% 93.3% 95.8%
False alarms 33 14 10 3
FAR∗ (fp/h) 1.91 0.81 0.58 0.17
Mean Latency(sec) 4.42 3.75 3.26 3.80

*FAR–false alarm rate

Detailed schematic illustrating number of missed seizures
and false alarms for each subject can be found in Fig 1. It is
observed that for subject 2 and subject 23, BPsvm-2chn could
identify all the seizures while not triggering more false alarm
than seizNet-2chn which could not find all the seizures for the
mentioned subjects.

Fig. 1. Mis-identified and false alarm seizures across subjects

3.4. Filters in SeizNet

To understand what representation features are learned in
seizNet, we use Activation Maximization method explained
thoroughly in Section 2.3. It enables us to visualize the low
level and high level features that help to reveal the feature
hierarchy throughout convolution layers of SeizNet. In this
work, AM is implemented with keras-vis library [19]. Un-
like the baseline method in which activation maximization
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loss is based on only model weights, the library provides
two kind of regularization terms, namely LP norm and total
variation added to the loss in order to enforce natural image
prior. Default values are preserved for the weights of these
regularization terms. Only input range is changed according
to our pre-processing, and it is set to (-10,10). Finally, seed is
initialized with random values.

Fig. 2. Filters from 4 convolutional layers

In image classification problems, filters at the first convo-
lutional layer usually encode the direction and color, in other
words channels. Hierarchically moving along the CNN, more
and more complex features are found at the higher layers that
are indeed combination of features at the lower levels [12].

In SeizNet, the first layer filters present very basic shapes
as shown in Fig 2.a. While interpreted as color encoding from
the perspective of image analysis, for SeizNet the filters can
be thought to encode EEG channel information, due to the
fact that there are filters that have high and constant value for
the channel 1 and low and constant value for the channel 2
and vice versa. Another possible interpretation could come
from EEG montage perspective where bi-polar signal repre-
sents the difference of two electrodes, since the filters indeed
subtract the channels one another.

Fig. 3. Examples of seizure waveforms (3 seconds)

In the second convolution layer, various kind of filters
have been found but nothing meaningful to us has been ob-
served. However, from the third convolution layer onwards
we observe substantial characteristics of seizures, therefore
our hypothesis for the second layer is that it serves as the
middle man to bring basic information in the lower layers into
complex like-seizure signals in the higher layers

Characteristics of the seizures are observed at the third
convolution layer and become clearer at the last convolution
layer. It can be inferred that SeizNet has learned the fact that
absence seizures create periodic and 3 Hz signals. Nonethe-
less, clearly SeizNet focuses on spike-and-wave happening
three times in one second and try to capture it rather than cap-
turing a whole shape of a seizure. One possible reason behind
is that seizure patterns often vary from subject to subject as
can be seen from the Fig 3, therefore it is reasonable for fil-
ters of a generalized model to learn the common and salient
characteristics of seizures.

4. DISCUSSION AND CONCLUSION

It has been observed from the overall results that SeizNet is
better than BPsvm in terms of sensitivity and false alarm. It
shows that CNN models are more suitable for generalized
models unlike the SVM which is indeed often implemented
in subject-specific models. Nevertheless, as observed in Fig
1, frequency domain features can be more discriminative than
the features extracted from time-domain for some subjects.
This is also consistent with the fact that even EEG experts are
to check the spectrogram in some cases in order to finalize
their decision. An interesting discovery in this study is that
SeizNet model trained by only 2 channels is able to outper-
form traditional approach trained with full scalp EEG data.

End-to-end approach is more favorable for developing
real time seizure detection systems as it eliminates feature
extraction, which can be a burden for real time signal pro-
cessing. A solution using data merely from 2 channels makes
the approach even more adoptable for light-weight, home
based seizure monitoring system.
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