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ABSTRACT 
 

This paper presents a new approach for detecting attention 
from auditory steady-state responses (ASSR) by using 
musical excerpts. The feature extraction process for 
electroencephalogram (EEG) signal is combined with a 
support vector machine as a binary discriminator. A novel 
modulation that emphasizes the beat timing of the excerpts 
has enhances the EEG response. Thanks to the beat-locked 
epoch extraction and additional information that signals the 
locked excerpt, the estimation errors are less than 8% using 
only ten seconds of data. Contrary to our expectations, a 
waveform-averaging method outperforms a harmonic filter 
bank and a bin-subtraction methods in the frequency domain 
for feature extraction. Overall, attention estimation from 
EEGs using musical excerpts as stimuli has been 
successfully achieved, which represents significant progress 
towards the development of a mass-EEG measurement 
system. 

Index Terms— Brain-computer interface, musical 
excerpt, beat, auditory steady state response, support vector 
machine. 
 

1. INTRODUCTION 
The brain-computer interface (BCI) is a developing 
technology aimed at controlling an external device by 
measuring the user’s brain activity. The major target of BCIs 
has been disabled persons, such as those with amyotrophic 
lateral sclerosis. Thanks to recent developments in 
electroencephalography technology, BCIs are no longer 
expensive nor restricted to laboratory use [1]. Moreover, it is 
becoming possible to gather physiological data from large 
audiences attending exhibitions or live performances [2]. 
This situation opens up new possibilities for BCI technology. 
For example, if we can determine the object on which an 
audience is focusing (like a specific exhibition booth or 
specific sound stream), we can use such information to 
evaluate the object’s appearance or as feedback to enhance 
audience experiences (Fig. 1). Our final goal is to achieve 
such mass-electroencephalogram (EEG) measurement. In 
this sense, though we use the term BCI, our aim is more at 
detecting the object that people are focusing on than on 
maximizing the transfer rate of their intention. For this 
purpose, a simple EEG device is preferable to one that uses 
dozens of channels. 

 
Fig. 1. Concept of mass-EEG measurement. In this example, 
each booth has its own modulation stimulus. We ascertain 
the booth on which attendees are focusing from their EEGs. 
The results are used to evaluate the booths and as feedback 
to enhance the attendees’ experience.  

Although we can use a visual or auditory stimulus for 
cueing, we choose an auditory one as our first step. This is 
because visual stimuli that evoke visually steady-state 
responses (VSSRs) are relatively more annoying than 
auditory stimuli. Besides, audio steady-state responses 
(ASSRs), which were once considered to have little hope for 
detecting attention, are now showing some optimistic results 
for attentional detection [3-5]. Traditionally, a pure tone 
modulated with frequencies from 10 to 40 Hz or event-
related potential (ERP) has been used [6-8]. Recently, 
however, repetitive stimuli whose frequency ranges from 0.5 
to around 5 Hz are attracting more interest because they 
make a distinct difference from the pure ERP [9]. Several 
studies have suggested that there are beat-locked responses 
in EEGs and that the responses may change according to the 
attentional level of the participants to the stimulus [10, 11]. 
Moreover, a study showed that presented excerpts can be 
estimated from EEGs, though it requires offline analysis 
using with the whole set of EEG data [12].  

However, BCIs using this frequency range (0.5 to 5Hz) 
have rarely been studied. Although musical excerpts are 
expected to ease the difficulty of attentional tasks, most 
studies have used pure tones or artificial sounds. In this study, 
we focused on this low-frequency range and used musical 
excerpts as stimuli. Since beat timing is close to the 
frequency range of interest, we created frequency-modulated 
stimuli by emphasizing the beat timing in the excerpts. Note 
that our aim is not to design a BCI speller but rather to 
determine the object of an audience’s attention in a common 
situation. Our study starts with a dual listening task, and the 
analysis is more aimed to run with a few electrode channels. 
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2. METHODS 
2.1. Stimuli 
As shown in Table 1, stimuli consisted of artificially made 
stimuli [4] and musical excerpts. All musical excerpts were 
sampled at 44.1 kHz and lasted for 50 seconds. They were 
modulated in amplitude with the frequency matched to that 
of the beat. Since the original excerpts were recorded ones, 
there were fluctuations in tempo. Therefore, we adjusted 
modulations to match the beats as follows. For sinusoidal 
modulation: 

𝒎𝒎𝒔𝒔(𝒕𝒕) = 𝑨𝑨𝐜𝐜𝐜𝐜𝐜𝐜 �𝟐𝟐𝟐𝟐 � 𝒕𝒕−𝑩𝑩𝒏𝒏
𝑩𝑩𝒏𝒏+𝟏𝟏−𝑩𝑩𝒏𝒏

��+(𝟏𝟏 − 𝑨𝑨).  (1) 

And for exponential modulation: 

𝒎𝒎𝒆𝒆(𝒕𝒕) = 𝑨𝑨�𝟏𝟏 − � 𝒕𝒕−𝑩𝑩𝒏𝒏
𝑩𝑩𝒏𝒏+𝟏𝟏−𝑩𝑩𝒏𝒏

��
𝟐𝟐

+ (𝟏𝟏 − 𝑨𝑨).  (2) 

Here, t is time, Bn is the time of the n th beat, and A is the 
modulation depth parameter. We used A=0.8 in our 
experiment. Examples of the modulated sounds are shown in 
Fig. 2. These modulations were conducted to enhance the 
ASSR by emphasizing the beat rhythm. No modulation was 
done for A514 and A824 since they are already modulated. 

2.2. Participants and tasks 
A preliminary test was conducted to see difference in the 
EEG responses caused by different modulations. In this test, 
sinusoid modulation and exponential modulation were 
applied to the excerpts and presented monaurally to the 
participants. 

In the main experiment, a block consisted of monaural 
trials (only one modulated excerpt presented) and binaural 
trials (two modulated excerpts presented, one played from 
the right and the other from the left). In the binaural trials, 
participants were asked to focus on one of the streams (left 
or right), which was indicated by the experimenter, and asked 

to count the number of beats. The task was given to make 
sure that the participants were focusing on the indicated 
stream. After the trial ended, they were asked to report the 
number of beats they had counted and evaluate on a five-
point scale the easiness of keeping their focus on the stream. 
Excerpts presented from the left and right were 
counterbalanced and presented in random order. Artificial 
sounds and music excerpts were tested separately. Since 
conditioning trials (pink noise presented monaurally) were 
included, the block totals to 22 trials.  

The experiments were conducted in an acoustically 
shielded room. The participants sat on a comfortable chair 
facing loudspeakers. They were not restricted from blinking, 
but they were requested to fixate a visual marker and refrain 
from muscle movement, especially tapping or moving with 
the beat rhythm. In the middle of the block, the participants 
could rest for few minutes if they so desired, and more than 
15 minutes of rest was allotted between blocks. A total of 
three blocks were conducted.  

We recruited five adults (all females) for the preliminary 
test and ten adults (three males and seven females) for the 
main experiment. All the participants were healthy and had 
no hearing difficulties. They provided written informed 
consent prior to the experiments. All the experiments were 
approved by the Ethics and Safety Committee of NTT 
Communication Science Laboratories and adhered to the 
tenets of the Helsinki Declaration. 

Sound pressure at the participant's position was kept below 
80 dB (average 60 dB) for the duration of the experiment. 
EEGs were recorded using a DSI-24 (wearable sensor) 
sampled at 300 Hz with 20 electrodes. Custom software 
written in LabVIEW 2012 (National Instruments) was used 
for stimulus presentation and EEG device control. 

2.3. Data processing 
All signal processing was conducted offline using MATLAB 
R2017a (The Math Works) with EEGLab [13]. After band-
pass filtering, artifact rejection was conducted. More 
specifically, an independent component analysis (ICA) was 
conducted using the data both from the resting trials and pink 
noise trials. Then, blinking-related components were 
specified and removed from the other data.  
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 Table 1. List of excerpts. Four different type of musical excerpts 
were selected. The selections had different beats per minute 
(BPM) and were different types of music. A514 and A824 were 
artificially made, similar to [4], with 520-Hz carrying frequency 
with 1.4-Hz modulation and 800-Hz carrier with 2.4-Hz 
modulation, respectively. 

ID C112 E801 E802 E805 A514 A824 

Bpm 95 176 60 115 84 144 

Type 
Classic 

Swinging 

Pops 

Happy 

New age 

Beautiful 

Techno 

Bouncy 
520-Hz 
carrier 

800-Hz 
carrier 

 

Figure 2. Examples of modulated sound. The thick black line shows 
the modulation coefficient calculated from (1) and (2). 
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Our purpose here is to create a reliable binary classifier to 
estimate the attended auditory object from the EEG data. We 
can utilize both the frequency and onset of the beat timing as 
prior knowledge. In our processing, beat timings from 
different excerpts (e(-1,i), e(1,i)) were treated as different events. 
In other words, after feature vectors were extracted, 
additional information was given to signal the locked excerpt. 
A support vector machine (SVM) [14] was used to train and 
estimate the attended stream. Training was done for each 
combination of stimulus and participant. Evaluations were 
made using the ten-fold cross-validation method. For the 
purpose of seeking good feature representation, we 
compared three methods.  

The first method (waveform) averages the waveform 
locked to the events. The EEG waveform locked to the ith 
event of excerpt m is extracted as epoch 

𝑿𝑿(𝒎𝒎,𝒊𝒊) = �𝒙𝒙𝒆𝒆(𝒎𝒎,𝒊𝒊)+𝑻𝑻𝒔𝒔 , … ,𝒙𝒙𝒆𝒆(𝒎𝒎,𝒊𝒊), … ,𝒙𝒙𝒆𝒆(𝒎𝒎,𝒊𝒊)+𝑻𝑻𝒆𝒆�, (3) 

where xt is EEG output at time t, and Ts and Te specify the 
time ranges used for averaging, which were set as -200 ms 
and 500 ms in this method. High-cut filtering was applied 
prior to epoch extraction, and downsampling was conducted 
afterward to preserve the precise timing of the event. The 
averaged feature vector can be calculated as  

𝐯𝐯 = �∑ 𝐗𝐗(𝒎𝒎,𝒊𝒊)
𝒏𝒏+𝟖𝟖
𝒊𝒊=𝒏𝒏 �.    (4) 

The vector was then normalized, and additional information 
feature m (represented as -1 or 1) was added to signal the 
locked excerpt.  

The second method (harmonic filter) focuses on the given 
frequency of the excerpt. In this method, a bank of band-pass 
filters whose center frequency matches that of the given 
excerpts was formed and applied to the EEG data. The band-
pass filters, fw, were set to pass plus/minus 1 percent of center 

frequency w. Since our interest lies in multiples of the basic 
modulation frequency, the filter bank was applied as  

 𝐅𝐅(𝒕𝒕) = �𝒇𝒇𝒎𝒎𝟏𝟏(𝒙𝒙𝒕𝒕), 𝒇𝒇𝟐𝟐𝒎𝒎𝟏𝟏(𝒙𝒙𝒕𝒕), 𝒇𝒇𝒎𝒎𝟐𝟐(𝒙𝒙𝒕𝒕), 𝒇𝒇𝟐𝟐𝒎𝒎𝟐𝟐(𝒙𝒙𝒕𝒕)  �𝐓𝐓, (5) 

where m1 and m2 are the same as the beat frequency of the 
presented excerpts. The outputs with 100- and 300-ms 
latency from each excerpt’s events were extracted. After this 
epoch extraction, the vector was averaged eight times, and, 
as in the first method, information about the locked excerpt 
was added. 

The third method (bin subtraction) is based on the 
assumption that the signal amplitude at a given narrow 
frequency bin should be similar to the signal amplitude of the 
mean of the surrounding frequency bins if no stimulus exists 
[9]. According to this assumption, a 0.5- to 30-Hz filtered 
waveform was epoch extracted as in (3) with [Ts, Te]=[-4s, 
5s]. A Kaiser window (beta=2) was applied, and then 214-
point fast Fourier transform (FFT) was conducted. Target 
bins (frequencies match the bpm and its multiples) were 
taken and subtracted using the surrounding bins. This method 
is a replication of the one in [9, 11] but different in the length 
of the waveform used for FFT. As far as we know, this is the 
first time this method has been applied for BCI purposes. In 
this method, information about locked excerpt was also 
added as a feature. 

Since increasing the number of features can benefit the 
SVM results, all the methods were coordinated to have the 
same number of features. In this study, eight features plus the 
information about the locked excerpt were used. 

3. RESULTS 
Data from two participants were removed: from one due to 
noise level contamination, and from another due to an 
incorrect number of answers for the given task.  

b) c)a)

Figure 3. Averaged EEG reponse locked to the event of excerpt E805. a) Without modulation. b) Exponential 
modulation. c) Sinusoidal modulation. 
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The data obtained in the preliminary test was epoch-
extracted and averaged for all participants. An example is 
shown in Fig 3. We can see that large EEG responses exist 
mainly in the frontal cortex. The responses differed with the 
type of modulation. We chose exponential modulation for the 
main test because it gave relatively stable responses 
compared to other modulations in many cases. Since we want 
to achieve our final goal using a simple EEG device, the 
number of channels has to be limited. Hereafter, the data 
shown were calculated only from the Fz channel. Although 
the results are not shown, we checked the other channels in 
the frontal area to confirm that they have similar performance. 

For the main experiment, Fig. 4 shows the results for the 
SVM applied to the three types of feature extraction 
evaluated by ten-fold cross-validation. Figure 5 shows the 
subjective evaluation the ease of staying focused on the 
indicated excerpt and neglecting the other. 

a)

 
b)

 
Fig. 4. Error rates of ten-fold cross-validation using SVM. 
SVMs were used for each combination of participants and 
stimuli. a) Error rate averaged over stimuli to see the 
difference between participants. b) Error rate averaged over 
participant to see the difference between stimuli. 

 
Fig. 5. Averaged evaluation of ease of focusing attention on 
the indicated stream. A significant difference was found with 
ANOVA F(6)=3.47, p<0.01. Subjective tests revealed 
significances only for the pair between A514A824, which are 
suggested with * for p<0.05. 

 

4. DISCUSSION 
Although musical excerpts are expected to have a great 

advantage in BCIs, few studies have used them for BCI 
purposes. From Fig. 5, we can confirm that even modulated 
musical excerpts are better than artificial stimuli for keeping 
focus on the stream. In Fig. 3, we can see prominent 
responses locked to the beat onsets and that the proposed 
exponential modulation gives the steepest and fastest EEG 
responses. The responses are mainly observed in the frontal 
area, is consistent with previous reports [3, 9]. 

We tested three methods for feature extraction. All 
methods used almost the same length of EEG data (around 
10 s) to have the same number of features (eight features). 
Therefore, the error rates in Fig. 4 are considered to reflect 
the quality of the feature extractions. The bin-subtraction 
method has shown promising performance [9]. However, the 
averaged waveform method outperformed it and the 
harmonic filter method (Fig. 4). The reason may be the 
length used for calculation, but, more importantly, this could 
be due to fluctuations in the beat frequency. Since lower 
frequencies are vulnerable to time shifting, adaptive phase 
locking becomes important. In other words, our method 
succeeded in exploiting the ASSRs by precisely following 
the fluctuations both in modulation and in epoch extraction. 

5. CONCLUSION 
In this study, we showed that musical excerpts can be used 
for BCI purposes. To exploit the beat rhythm, we conducted 
modulation to emphasize the EEG response and used beat-
locked feature extraction. Thanks to the precise beat locking, 
the error rate is low enough for a mass-EEG measurement 
system.  
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