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ABSTRACT

This paper presents a method to estimate viewed image categories
from human brain activity via newly derived semi-supervised fuzzy
discriminative canonical correlation analysis (Semi-FDCCA). The
proposed method can estimate image categories from functional
magnetic resonance imaging (fMRI) activity measured while sub-
jects view images by making fMRI activity and visual features ob-
tained from images comparable through Semi-FDCCA. To realize
Semi-FDCCA, we first derive a new supervised CCA called FDCCA
that can consider fuzzy class information based on image category
similarities obtained from WordNet ontology. Second, we adopt
SemiCCA that can utilize additional unpaired visual features in ad-
dition to pairs of fMRI activity and visual features in order to prevent
overfitting to the limited pairs. Furthermore, Semi-FDCCA can be
derived by combining FDCCA with SemiCCA. Experimental results
show that Semi-FDCCA enables accurate estimation of viewed im-
age categories.

Index Terms— Brain-computer interface (BCI), functional
magnetic resonance imaging (fMRI), canonical correlation analysis.

1. INTRODUCTION

Daily actions such as grabbing objects with hands or communicating
with others are not easy for people with severe physical disabilities,
like amyotrophic lateral sclerosis (ALS) and spinal cord injury. A
brain-computer interface (BCI), which enables people to send com-
mands and messages to external computers through human brain ac-
tivity [1, 2], can improve the quality of life of such people.

Toward the construction of BCI, several studies have attempted
to control machines by using brain activity recorded by implantable
microelectrode array (MEA) [3], electroencephalography (EEG) [4],
and near-infrared spectroscopy (NIRS) [5]. Since implantable MEA
belongs to invasive measurement methods, which use electrodes im-
planted in brains, it requires heavy burdens for people. On the other
hand, EEG and NIRS are non-invasive measurement methods; how-
ever, these methods have low spatial resolutions [6]. In this situa-
tion, functional magnetic resonance imaging (fMRI), which is the
non-invasive measuring method that has a high spatial resolution,
is the mainstay of neuroimaging in cognitive neuroscience [7]. In
particular, machine learning of fMRI activity has enabled the in-
terpretation of cognitive states including what people see [8, 9] and
imagine [10]. These studies estimate image categories (e.g., faces,
houses, and chairs) by using fMRI activity measured when people
viewed or imagined images. Earlier studies [8–10] demonstrated that
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the feasibility of estimating viewed image categories by multivariate
statistical analysis such as linear discriminant analysis (LDA) [11]
and support vector machines (SVM) [12]. These methods classified
patterns of fMRI activity evoked by the visual presentation of various
image categories. Subsequently collected fMRI data were classified
according to the similarities between their fMRI activity and that of
prior training examples. However, these methods [8–10] cannot es-
timate novel image categories that were not presented in the training
phase since the outputs are limited to the categories used for training
of the classifiers.

Recent studies [13–15] have overcome this limitation by asso-
ciating fMRI activity with visual features obtained from the viewed
images by using a convolutional neural network (CNN) [16], a Ga-
bor wavelet filter [17], and an HMAX model [18]. The method [14]
trained linear regression models to predict visual features from fMRI
activity measured while subjects viewed images; then the trained
models can predict visual features from fMRI activity measured
when viewing novel image categories that were not used in the train-
ing phase. In our previous work [15], we adopted canonical correla-
tion analysis (CCA) [19] to associate fMRI activity with visual fea-
tures. We calculate linear transformations that project fMRI activity
and visual features into the same latent space through CCA; then
we enable direct comparison between fMRI activity measured when
viewing novel image categories and visual features. However, ac-
quisition of fMRI data requires time and body burdens for subjects.
Therefore, these methods [14,15] can obtain only a small amount of
fMRI data measured when viewing limited image categories. Hence,
the above previous methods have the following two problems.
Problem (i): The performance of estimating image categories may
be degraded when the number of pairs of fMRI activity and visual
features is limited.
Problem (ii): It is difficult to accurately estimate image categories
that were not used in the training phase.

In this paper, we propose a novel method that estimates viewed
image categories from fMRI activity via semi-supervised fuzzy dis-
criminative canonical correlation analysis (Semi-FDCCA). We solve
the aforementioned problems by the following approaches.
Approach (i): To solve Problem (i), we introduce a supervised
scheme that can consider image category information to improve the
performance of estimating image categories.
Approach (ii): To solve Problem (ii), we enable utilization of many
additional images that were not presented when measuring fMRI ac-
tivity.
In Approach (i), we derive novel CCA, called fuzzy discrimina-
tive CCA (FDCCA), which incorporates image category information
into the framework of CCA. FDCCA aims to calculate projections
to maximize the correlation of the projected samples according to
the similarities between categories calculated on the basis of the on-
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tology of WordNet [20]. In Approach (ii), we use semi-supervised
CCA (SemiCCA) [21] in order to prevent projections from overfit-
ting to the limited categories by utilizing many additional images.
Furthermore, we newly derive Semi-FDCCA by combining FDCCA
with SemiCCA. By using Semi-FDCCA, we can calculate projec-
tions that enable accurate estimation of novel image categories that
were not used in the training phase. Experimental results show that
both Approaches (i) and (ii) can improve the performance of esti-
mating novel image categories.

The rest of this paper is organized as follows. In Section 2, CCA
and some of its extensions are reviewed briefly. In Section 3, a
method for estimating viewed image categories via Semi-FDCCA
is presented. In Section 4, we present the experimental results. Con-
clusions of this paper are given in Section 5.

2. PRELIMINARY

2.1. Canonical Correlation Analysis
First, we explain canonical correlation analysis (CCA) [19].
Given a pair of matrices X = [x1, · · · ,xN ] ∈ RDx×N and
Y = [y1, · · · ,yN ] ∈ RDy×N , where each sample is a vector with
dimensions Dx and Dy , and N is the number of samples. We as-
sume that X and Y are both centered. The aim of CCA is to find a
pair of projection vectors wx ∈ RDx and wy ∈ RDy to maximize
the correlation between wT

xX and wT
y Y as follows:

max
wx,wy

wT
xXY Twy√

wT
xXXTwx

√
wT

y Y Y Twy

(1)

s.t. wT
xXXTwx = wT

y Y Y Twy = 1.

The solution of formula (1) can be obtained by solving the following
generalized eigenvalue problem:[

0 XY T

Y XT 0

] [
wx

wy

]
= λ

[
XXT 0

0 Y Y T

] [
wx

wy

]
, (2)

where λ is the eigenvalue.
2.2. Discriminative Canonical Correlation Analysis
Next, we explain discriminative canonical correlation analysis
(DCCA) [22]. DCCA is a supervised CCA that utilizes the class
information. DCCA aims to find projection vectors wx ∈ RDx

and wy ∈ RDy to ensure that the within-class correlation between
wT

xx and wT
y y is maximized, while the between-class correlation

between wT
xx and wT

y y is minimized as follows:

max
wx,wy

wT
xCwwy − η ·wT

xCbwy√
wT

xXXTwx

√
wT

y Y Y Twy

(3)

s.t. wT
xXXTwx = wT

y Y Y Twy = 1,

where η is a parameter, and Cw and Cb denote covariance matrices
of the within-class samples and the between-class samples, respec-
tively. Cw and Cb are defined as

Cw =

C∑
i=1

Ni∑
k=1

Ni∑
l=1

x
(i)
k y

(i)T
l ,Cb =

C∑
i=1

C∑
j=1,j ̸=i

Ni∑
k=1

Nj∑
l=1

x
(i)
k y

(j)T
l ,

where x(i)
j and y

(i)
j denote jth samples in ith class, Ni is the number

of samples belonging to ith class, and C is the number of classes.
The solution of formula (3) can be obtained by solving the following
generalized eigenvalue problem:[

0 C̄xy

(C̄xy)
T 0

] [
wx

wy

]
= λ

[
XXT 0

0 Y Y T

] [
wx

wy

]
, (4)

where λ is the eigenvalue, and C̄xy = Cw − η ·Cb.

2.3. Semi-supervised Canonical Correlation Analysis
Furthermore, we explain semi-supervised canonical correlation anal-
ysis (SemiCCA) [21]. In addition to a pair X ∈ RDx×N and
Y ∈ RDy×N , SemiCCA utilizes unpaired samples YU ∈ RDy×M ,
where M is the number of unpaired samples. SemiCCA combines
CCA and principal component analysis (PCA) [23]. In SemiCCA,
CCA utilizes only paired samples, while PCA also utilizes unpaired
samples to reveal the global structure. The solution of SemiCCA can
be obtained by solving the following generalized eigenvalue prob-
lem:

B

[
wx

wy

]
= λB

[
wx

wy

]
, (5)

where

B = β

[
0 CPxy

(CPxy )
T 0

]
+ (1− β)

[
CPxx 0
0 Cyy

]
, (6)

B = β

[
CPxx 0
0 CPyy

]
+ (1− β)

[
IDx 0
0 IDy

]
. (7)

CPxy , CPxx , and CPyy are covariance matrices of paired samples
CPxy = XY T/N, CPxx = XXT/N, CPyy = Y Y T/N,
and Cyy is covariance matrices of paired and unpaired samples
Cyy = (Y Y T + YUY

T
U )/(N +M). In Eqs. (6) and (7), β is a

parameter, which controls the trade-off between CCA and PCA.
Namely, when β = 1, Eq. (5) is reduced to the CCA eigenvalue
problem shown in Eq. (2), while when β = 0, Eq. (5) is reduced to
the PCA eigenvalue problem.

3. ESTIMATION OF VIEWED IMAGE CATEGORIES
FROM FMRI ACTIVITY VIA SEMI-FDCCA

Our method consists of the training phase (3.1) and test phase (3.2).
In the training phase, we calculate linear transformations that project
fMRI activity and visual features into the same latent space via
a novel canonical correlation analysis, Semi-FDCCA. In the test
phase, we estimate viewed image categories from fMRI activity.

3.1. Training Phase
First, we obtain fMRI data measured when viewing images; how-
ever, the presence of many irrelevant fMRI features for estimation
could lead to poor performance. To solve this problem, we use
sparse logistic regression (SLR) [24], which automatically selects
relevant fMRI features. SLR is often used in fMRI activity anal-
ysis [14, 25, 26]. By selecting fMRI features via SLR, we obtain
fMRI activity features X = [x1, · · · ,xN ] ∈ RDx×N , where
each sample is a vector with dimension Dx, and N is the num-
ber of samples. Also, we extract visual features from images pre-
sented when measuring fMRI activity. We used visual features ob-
tained from the third pooling layer of Inception-v3 architecture [27],
which was trained with images in ImageNet [28] to classify image
categories. Due to its high discriminant power, features obtained
from Inception-v3 are one of the most commonly used visual fea-
tures [29, 30]. We reduce dimensions of visual features by PCA to
prevent Semi-FDCCA from overfitting; then we obtain visual fea-
tures Y = [y1, · · · ,yN ] ∈ RDy×N , where each sample is a vector
with dimension Dy . We assume that X and Y are both centered.
Here, we find a pair of projection vectors wx ∈ RDx and wy ∈ RDy

via FDCCA. FDCCA is derived from the idea of DCCA (see 2.2),
and FDCCA aims to calculate projections to maximize the correla-
tion of the projected samples according to the similarities between
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categories as follows:

max
wx,wy

wT
xChwy − α ·wT

xClwy√
wT

xXXTwx

√
wT

y Y Y Twy

(8)

s.t. wT
xXXTwx = wT

y Y Y Twy = 1,

where α is a parameter, and Ch and Cl denote covariance matrices
of similar samples and dissimilar samples, respectively. For calcu-
lating Ch and Cl, we define

X = [x
(1)
1 , · · · ,x(1)

N1
, · · · · · · ,x(C)

1 , · · · ,x(C)
NC

] ∈ RDx×N ,

Y = [y
(1)
1 , · · · ,y(1)

N1
, · · · · · · ,y(C)

1 , · · · ,y(C)
NC

] ∈ RDy×N ,

eNi = [ 0 · · · 0︸ ︷︷ ︸∑i−1
t=1 Nt

, 1 · · · 1︸ ︷︷ ︸
Ni

, 0 · · · 0︸ ︷︷ ︸
N−

∑i
t=1 Nt

]T ∈ RN ,

eNj = [ 0 · · · 0︸ ︷︷ ︸∑j−1
t=1 Nt

, 1 · · · 1︸ ︷︷ ︸
Nj

, 0 · · · 0︸ ︷︷ ︸
N−

∑j
t=1 Nt

]T ∈ RN ,

S =


S11 S12 · · · S1C

S21 S22 · · · S2C

...
...

. . .
...

SC1 SC2 · · · SCC

 ∈ RN×N ,

Sij =

S(i, j) · · · S(i, j)
...

. . .
...

S(i, j) · · · S(i, j)

 ∈ RNi×Nj ,

where x
(i)
t and y

(i)
t denote tth samples in ith category, Ni is the

number of samples in ith category, and C is the number of cate-
gories. S(i, j) represents the similarity between ith category and
jth category. For the similarities between categories, we used path
similarity [31], which denotes the similarity between two categories
based on the shortest path that connects the categories on the ontol-
ogy of WordNet [20]. Then Ch and Cl are defined as

Ch =

C∑
i=1

C∑
j=1

S(i, j)

Ni∑
k=1

Nj∑
l=1

x
(i)
k y

(j)T
l

=

C∑
i=1

C∑
j=1

S(i, j)(XeNi)(Y eNj )
T

= XSY T,

Cl =

C∑
i=1

C∑
j=1

S(i, j)

Ni∑
k=1

Nj∑
l=1

x
(i)
k y

(j)T
l

=

C∑
i=1

C∑
j=1

S(i, j)(XeNi)(Y eNj )
T

= XSY T,

where

S(i, j) =

{
S(i, j) (S(i, j) ≥ θa)

0 (otherwise)
,

S(i, j) =

{
S(i, j) (S(i, j) ≤ θb)

0 (otherwise)
,

S =


S11 S12 · · · S1C

S21 S22 · · · S2C

...
...

. . .
...

SC1 SC2 · · · SCC

 , S =


S11 S12 · · · S1C

S21 S22 · · · S2C

...
...

. . .
...

SC1 SC2 · · · SCC

 ,

Sij =

S(i, j) · · · S(i, j)
...

. . .
...

S(i, j) · · · S(i, j)

 , Sij =

S(i, j) · · · S(i, j)
...

. . .
...

S(i, j) · · · S(i, j)

 .

Here, θa and θb are thresholds that distinguish similar samples from
dissimilar samples. The solution of formula (8) can be obtained by
solving the following generalized eigenvalue problem:[

0 Ĉxy

(Ĉxy)
T 0

] [
wx

wy

]
= λ

[
XXT 0

0 Y Y T

] [
wx

wy

]
, (9)

where λ is the eigenvalue, and Ĉxy = XSY T − α · XSY T.
By considering the similarity between categories when calculating
the projections wx and wy , FDCCA obtains projections that can
discriminate categories more precisely than DCCA.

Furthermore, we combine FDCCA with SemiCCA (see 2.3)
to prevent projections wx and wy from overfitting to the lim-
ited categories used in the training phase. For this purpose, in
addition to a pair X and Y , we extract unpaired visual features
YU = [yU,1, · · · ,yU,M ] ∈ RDy×M (M being the number of un-
paired images) from images that were not used when measuring
fMRI activity. We assume that the dimension of YU is reduced by
PCA, and YU is centered. We rearrange the eigenvalue problem in
Eq. (9) via SemiCCA as follows:

B

[
wx

wy

]
= λB

[
wx

wy

]
, (10)

where

B = β

[
0 CPxy

(CPxy )
T 0

]
+ (1− β)

[
CPxx 0
0 Cyy

]
,

B = β

[
CPxx 0
0 CPyy

]
+ (1− β)

[
IDx 0
0 IDy

]
.

CPxy , CPxx , and CPyy are covariance matrices of paired samples
CPxy = Ĉxy/N, CPxx = XXT/N, CPyy = Y Y T/N,
and Cyy is covariance matrices of all visual features
Cyy = (Y Y T + YUY

T
U )/(N +M). By solving the eigen-

value problem in Eq. (10), we obtain Wx = [wx1, · · · ,wxD] and
Wy = [wy1, · · · ,wyD] including projection vectors corresponding
to the D largest eigenvalues λ = [λ1, · · · , λD], where D satisfies
D ≤ min(Dx, Dy) and D ≤ C. By using the newly derived
Semi-FDCCA, we calculate projections that can (i) consider fuzzy
class information, i.e., the similarities between categories and
(ii) improve the generalization capability by utilizing unpaired
visual features.

3.2. Test Phase
We estimate image categories from fMRI activity measured when
subjects viewed test images, i.e., unobserved images in the training
phase. By using fMRI features selected in the training phase via
SLR, we obtain an fMRI activity feature xtest ∈ RDx from fMRI
activity measured when subjects viewed a test image. We also ex-
tract visual features ytest,i ∈ RDy (i = 1, 2, · · · , Ctest; Ctest being
the number of test image categories) obtained by averaging the vi-
sual features belonging to ith test image category. We assume that
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Table 1. Average ranks of correctly estimated image categories for 50 test images. It was confirmed that the differences between ranks of
correctly estimated image categories for all test images via Ours (Semi-FDCCA) and those via Refs. [14], [15], DCCA [22], and FDCCA was
statistically significant with P < 0.01 by Welch’s t-test [32]. In addition, it was significant with P < 0.3 between Ours and SemiCCA [21].

Ref. [14] Ref. [15] (CCA [19]) DCCA [22] FDCCA SemiCCA [21] Ours (Semi-FDCCA)
Subject 1 15.86 17.52 17.38 16.94 15.94 14.40
Subject 2 15.78 16.82 13.62 13.22 13.16 11.68
Subject 3 13.60 17.24 13.88 13.24 10.46 8.84
Subject 4 14.58 13.34 12.42 12.46 10.76 9.90
Subject 5 14.90 13.04 13.08 12.40 9.44 10.20

Mean ± SD　 14.94 ± 0.93 15.59 ± 2.21 14.08 ± 1.93 13.65 ± 1.88 11.95 ± 2.61 11.00 ± 2.15

the dimension of ytest,i is reduced by PCA, also xtest and ytest,i are
both centered by using the means of X and Y , respectively. Next,
we calculate new features u and vi on the same latent space by using
projections as follows:

u = ΛWT
x xtest ∈ RD, vi = WT

y ytest,i ∈ RD,

where Λ denotes diagonal matrix whose diagonal elements are
eigenvalues λ = [λ1, · · · , λD]. We enable accurate comparison
between u and vi by using Semi-FDCCA. Finally, we calculate cor-
relation coefficient between u and vi. By ranking categories in the
descending order of the correlation coefficient, estimation of image
categories from fMRI activity becomes feasible.

4. EXPERIMENTAL RESULTS

4.1. Dataset
We used public fMRI dataset provided in the previous study [14].
This dataset contains fMRI activity measured from five subjects
while viewing images collected from ImageNet [28]. Categories
corresponding to the ontology of WordNet [20] are attached to each
image. In the experiment in the previous study [14], a total of 1,200
images from 150 categories (eight images from each category) were
presented to each subject in the training phase, and a total of 50 im-
ages from 50 categories (one image from each category) were pre-
sented to each subject in the test phase1. Note that test image cate-
gories were not used in the training phase. We calculated test visual
features ytest,i by using the average of visual features obtained from
100 images that belong to ith test image category on ImageNet. Fur-
thermore, we utilized 10,000 images from Tiny ImageNet dataset2

as unpaired images for calculating projections via Semi-FDCCA.

4.2. Experimental Conditions
In this experiment, we empirically used 150-dimensional fMRI ac-
tivity features selected via SLR for each subject. We also used 203-
dimensional visual features after reducing dimensions via PCA so
that the cumulative contribution ratio becomes more than 80%. We
compared our proposed Semi-FDCCA with the following five meth-
ods: Ref. [14] (linear regression), Ref. [15] (CCA [19]), DCCA [22],
FDCCA, and SemiCCA [21]. We set α ∈ {0, 0.01, · · · , 1} and
β ∈ {0, 0.01, · · · , 1} in FDCCA, SemiCCA, and Semi-FDCCA.
Also, we empirically set thresholds θa = 0.5 and θb = 0.1 in FD-
CCA and Semi-FDCCA.

4.3. Results and Discussion
Figure 1 shows examples of rankings of estimated image categories
by our proposed Semi-FDCCA, and Table 1 shows average ranks of

1Since the previous study [14] measured fMRI activity for each test image
35 times, we used fMRI activity averaged across all trials.

2https://tiny-imagenet.herokuapp.com/

Fig. 1. Rankings of estimated image categories for test images
(‘Duck’ and ‘Airliner’). The horizontal line shows correlation coef-
ficient between u and vi. The vertical one shows ranks of estimated
categories, and correct categories are indicated in red.

correctly estimated image categories for 50 test images. Note that
we determined α and β as values that achieved the highest perfor-
mance in the validation using the training dataset. First, by com-
paring the results by FDCCA with Ref. [14] and Ref. [15] (CCA),
we can confirm the effectiveness of Approach (i): the introduction
of a supervised scheme that can consider image category informa-
tion. Moreover, we can confirm the effectiveness of considering the
similarities between categories by comparing the results by FDCCA
with DCCA. Second, from the results by SemiCCA, Ref. [14] and
Ref. [15] (CCA), we can confirm the effectiveness of Approach (ii):
the improvement of generalization capability by utilizing many ad-
ditional images. Furthermore, we can see that the collaborative
use of Approaches (i) and (ii) improves the estimating performance
since our proposed Semi-FDCCA outperforms the other five meth-
ods. The above experimental results have shown that our proposed
Semi-FDCCA enables accurate estimation of novel image categories
that were not used in the training phase.

5. CONCLUSIONS

In this paper, we proposed a novel method for estimating viewed
image categories from fMRI activity via Semi-FDCCA. We com-
bined FDCCA that can consider fuzzy class information, i.e., cate-
gory similarities with SemiCCA that can utilize many additional vi-
sual features; then Semi-FDCCA was newly derived. Consequently,
experimental results showed that our proposed Semi-FDCCA can
accurately estimate novel image categories that were not used in the
training phase.
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