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ABSTRACT

Interaction of neuronal oscillations across different frequency
bands plays an important role in perception, attention, and
memory. One particular form of interaction is the mod-
ulation of the amplitude of high-frequency oscillations by
the phase of low-frequency oscillations, known as phase-
amplitude coupling (PAC). Current methods for quantifying
PAC mostly rely on Hilbert transform which assumes that
brain activity is stationary and narrowband. Moreover, these
methods are limited to quantifying bivariate PAC and can-
not capture multivariate cross-frequency coupling between
different brain regions. This paper presents a new complex
time-frequency based high resolution PAC measure and its
extension to the multivariate case using PARAFAC (Parallel
Factor) model. The proposed approach is evaluated on both
simulated and real electroencephalogram (EEG) data.

Index Terms— Phase-Amplitude Coupling, time-frequency

distribution, multivariate analysis, PARAFAC, EEG

1. INTRODUCTION

Neuronal oscillations across different frequencies play an im-
portant role in motor and cognitive functioning [1, 2]. Many
ongoing hypotheses suggest that the coupling across frequen-
cies, known as cross-frequency coupling (CFC), controls
multi-scale information processing [3]. The most commonly
studied type of CFC looks at the coupling between the am-
plitude of a high frequency oscillation and the phase of a
low frequency oscillation and is known as Phase-Amplitude
Coupling (PAC) [4, 5]. PAC between the amplitude of broad-
band gamma activity (30-100 Hz) and the phase of various
low frequency rhythms (typically 5-12 Hz) has been reported
across several regions of the brain including the hippocam-
pus, the basal ganglia, and the neocortex [2]. The frequency
bands, the magnitude of coupling and the phase involved in
PAC vary with time and with anatomical specificity during
the execution of different cognitive and sensory tasks [6].
Given the diverse role of PAC in neuronal functioning,
there is a need to obtain unbiased, robust estimates of PAC.
Existing PAC measures rely on first bandpass filtering the
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neuronal oscillations followed by the Hilbert transform to ex-
tract phase and amplitude estimates of the oscillations [7].
However, neuronal oscillations are not necessarily narrow-
band and stationary. Therefore, the quantification of PAC
through Hilbert transform may lead to misidentification of
CFC [8, 9]. Recently, a generalized Morse wavelets (GMWs)
transform based PAC measure have been proposed, but the
performance of the method depends largely on the choice of
the input frequency range and different design parameters in
GMW [10]. Moreover, despite the increasing availability of
multichannel recordings like EEG and MEG, these current
methods focus solely on the single channel PAC. As indicated
by de Cheveigne et al., a single channel recording does not
necessarily correspond to a single brain dynamic [11]. There-
fore, there is a need for a multivariate PAC measure that can
determine cross-frequency interactions across channels.

In this paper, we first describe a new PAC measure
based on complex Reduced Interference Distribution (RID)-
Rihaczek time-frequency distribution [12]. Unlike the current
Hilbert transform based approaches, proposed approach does
not require any bandpass filtering and use the properties of the
complex time frequency distribution to offer a high-resolution
PAC estimate. Moreover, the existing CFC measures are bi-
variate in nature, focusing on phase amplitude modulations
within a channel. In this paper, we extended our PAC measure
to quantify multivariate cross-frequency coupling across all
channels and frequency bands using an N-way decomposi-
tion based on the PARAFAC (Parallel Factor analysis) model.
The PARAFAC based multivariate t-f PAC analysis allows
us to determine the spatial locations of the amplitude- and
phase-providing oscillations as well as to identify the low-
high frequency oscillation pairs with significant coupling.
The proposed approach is first evaluated on synthesized data
and is then applied to multichannel EEG data.

2. BACKGROUND

2.1. RID-Rihaczek Time-Frequency Distribution

For a signal z(t), its RID-Rihaczek distribution is defined as
[12]:
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C(t, f) = // exp (—Q) exp (j%T)A(e,f)e*j“t“ﬂfﬂdme,

where exp ( j%T) corresponds to the kernel function for the

Rihaczek distribution [13], and exp ( — @) corresponds to
the Choi-Williams kernel. A(#,7) is the ambiguity function
of the given signal z(t) defined as:

All,7) = /a:(u + g)x* (u— %)eﬂ’“du. 2)

This distribution satisfies both the time and frequency

marginals. Thus, [C(¢, f)df = |z(t)]* and [ C(¢, f)dt =
(X (F)P

3. METHODOLOGY

3.1. Time-Frequency PAC (t-f PAC)

PAC between the high frequency (f,) and low frequency (f;,)
oscillations of a given signal is defined as the modulation of
the high frequency amplitude, Ay, (t), by the phase of the
low frequency, ¢y, (t). To compute PAC between two neu-
ronal oscillations, z(t) and y(t), where the amplitude of x(¢)
is modulated by the phase of y(t), first RID-Rihaczek distri-
butions C (¢, f) and Cy(t, f) are computed as in (1). The
amplitude component of z(t) can be computed from the fre-
quency constrained time marginal of C,. (¢, f) as follows:
fag
Af = [
fay
where f,, and f,, define the bandwidth around the high fre-
quency of interest, f,. The phase component at the desired
frequency f, for y(t) can be extracted from the complex time-
frequency distribution Cy (¢, f) as follows:
fo _ Cy(tvfp) ]
ol 6 = [ 02 | @
After detecting the amplitude and phase components,
the phase-amplitude coupling between the two signals can
be computed using the mean vector length (MVL) [14] as
follows:

Ca(t, f)df, 3

MV Ly (fp, fa) —‘ ZAfa )i ¢ )

where 7' is the number of time points. MVL quantifies the
coupling between f, and f, by taking the length of the aver-
age vector.

3.2. Statistical Significance Testing

A statistical significance test was conducted by comparing in-
dividual t-f PAC values with a reference distribution obtained
under the null hypothesis that the amplitudes and phases are
uncorrelated. Reference distributions were created by gener-
ating 100 surrogate data by randomly shuffling the data and

pairing the phase of one trial with the amplitude of another
trial. Thus, 100 random MVL values were computed for each
electrode and frequency pair. Using these values, a threshold
value is obtained for 95% confidence interval. t-f PAC MVL
values that surpass the threshold value are considered signifi-
cant and used for the following multivariate analysis.

3.3. Multivariate t-f PAC (mv t-f PAC)

After computing the pairwise t-f PAC for all /V recording sites
and across all frequencies of interest, f, and f,, a N x IV

weighted and directed connectivity network, A/« where
Af’“f“ MVLf”’f" forall1 < 4,7 < N is constructed
based on the 51gn1ﬁcant pairwise t-f PAC values. Once these
adjacency matrices are constructed across different frequency
bands, the goal of multivariate analysis is to identify the sig-
nificant low-frequency and high-frequency phase-amplitude
modulation pairs. For this purpose, in this paper we focus on
four different low frequency bands (f,s) that may modulate
the high frequency amplitude (f,). To identify the particular
components of multivariate PAC, we use PARAFAC decom-
position [15].

Given Afrfe | a 3-way tensor A € RVN*N*K jg con-
structed where A(:, :, k) corresponds to the kth low frequency
band and K = 4 in our applications. A 3-way PARAFAC de-
composition is used to express .4 in terms of its factors across
each mode as:

jkz Zajfbk‘fclf7 (6)

where ay, by, cy are the loadmg vectors across each mode
and F' is the number of components determined by the
core-consistency, relative fit and loss parameters described
n [16]. ays provide the spatial loading for the different
phase-providing channels whereas b¢s provide the spatial
loading for the different amplitude-providing channels. The
third mode of the tensor A corresponds to the low and high
frequency band pairs that generate significant PAC, so c¢ys
provide the profile for the different PAC frequency pairs.

4. RESULTS

4.1. Multivariate t-f PAC for Synthesized data
4.1.1. Synthesized Data

Synthesized EEG data were generated by creating time series
in 2,004 dipole locations in the brain, where the locations
were based on a standard MRI brain. Random data were cre-
ated by computing the inverse Fourier transform of random
complex numbers which were sampled from a uniform distri-
bution. As the spectrum of EEG data follows the power law, a
sigmoidal curve was tapered on the spectrum of the generated
random data to impose a (1/f) shape and then concatenating
the mirrored version of the tapered spectrum to generate the
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negative frequencies. This procedure was performed individ-
ually for each voxel to generate the 2004 uncorrelated dipole
positions in the brain. Next, cross-voxel correlations were
enforced across all dipoles by generating a random dipole-
to-dipole correlation matrix, and calculating the new data as
Y = XTV D, where V and D are eigenvectors and eigenval-
ues of the generated correlation matrix, and X is the data ma-
trix. The forward model for projecting each dipole to the scalp
EEG locations were generated following the algorithm devel-
oped by openmeeg [17] implemented in Brainstorm [18].

To impose phase-amplitude coupling on the simulated
data, dipole positions corresponding to the low frequency
phase component and high frequency amplitude compo-
nents were selected. The low frequency phase signal at f,
was generated as xy (1) = Kj, sin(2mfyt), where Ky is
a fixed scalar that determines the amplitude of the phase
frequency (fp). The high frequency amplitude signal at
fo was generated as xy, (t) = Ay, (t)sin(27 f,t), where,

Af (t) = Kfa%%()), Ky, € [0,1] determines the
coupling strength, ¢, (t) is the phase of the low frequency
phase providing signal. Finally, the time series data from
selected dipoles were replaced with 2y, (t) and , (t) for the
low frequency and high frequency components, respectively.

4.1.2. Synthesized Data Results

For the analysis, two low frequency phase components were
constructed, one in the central cortex at 5 Hz (theta frequency
band) and the other in the frontal cortex at 10 Hz (alpha fre-
quency band). The amplitude providing component was gen-
erated at the occipital cortex at 70 Hz with its amplitude mod-
ulated by the phase of theta and alpha band oscillations. The
correlation between theta-gamma was set to be higher (0.8)
compared to the correlation between alpha-gamma (0.5). The
dipole positions are shown in Fig.1.

@ ) ©

Fig. 1. The dipole locations for the phase and amplitude com-
ponents used for generating the synthesized data: (a) Theta
band (5 Hz) phase providing dipole; (b) Alpha band (10 Hz)
phase providing dipole; (c) Gamma band (70 Hz) amplitude
providing dipole.

The t-f PAC values for all possible electrode combina-
tions (N = 64) were computed and the 64 x 64 PAC con-
nectivity networks were generated for delta-gamma, theta-
gamma, alpha-gamma and beta-gamma bands yielding A €
R64x64x4 " The 3-way PARAFAC decomposition was per-
formed as described in Section 3.3 and the first component of

the 3 loading matrices are plotted in Fig.2.
As shown in Fig.2 (a), the spatial profile for the phase

providing channels peaks at indices 35 (AFz) and 49 (C6).
The amplitude providing channel has a peak at index 28
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Fig. 2. The PARAFAC decomposition of 3-way tensor .A4:
(a) Phase providing channel indices; (b) Amplitude providing
channel indices; (c) PAC frequency band map.

(POz) (Fig.2 (b)). The PAC frequency band profile in Fig.2
(c) shows that the theta-gamma and alpha-gamma combina-
tions have the highest PAC among the four networks. Fig.3
(a-b) shows the significant edges for these networks with
CPz and POz having the highest out-degree and in-degree,
respectively. Therefore, these channels are selected as the
phase- and amplitude providing channels for theta-gamma
band PAC network. Similarly, for alpha-gamma band PAC
network, AFz and POz are the phase and amplitude providing
channels, respectively. These findings are consistent with
the channel combinations detected through PARAFAC de-
composition (Fig.2 (a)-(b)) and the dipole positions shown in
Fig.1.

The comodulograms are plotted to show the strength of
coupling between different oscillation frequencies, by com-
puting the t-f PAC MVL using (5) between the selected pair
of electrodes. Fig.3(c) and (d) shows the comodulograms be-
tween C6 and POz for theta-gamma network and between
AFz and POz for alpha-gamma network, respectively. The
proposed multivariate t-f PAC measure can correctly detect
the phase (5 Hz and 10 Hz) and amplitude (70 Hz) providing
frequencies with a high resolution. Theta-gamma modulation
(maximum t-f PAC=0.4523) is also found to be higher than
the alpha-gamma modulation (maximum t-f PAC=0.3149).

A comparison of the proposed mv t-f PAC method with
the existing Hilbert transform and wavelet transform based
PAC method is shown in Fig.3(d) and (g) and Fig.3(e) and (h)
. It can be seen from Fig. 3(c-f), Fig.3(d-g), and Fig.3(e-h)
the proposed multivariate t-f PAC method provides higher res-
olution estimates of the two frequencies that are coupled with
each other compared to the Hilbert transform and wavelet
based method. Unlike Hilbert transform based methods, the
proposed method does not require bandpass filtering of the
signals resulting in high resolution comodulograms.

4.2. Multivariate t-f PAC for EEG data
4.2.1. EEG Data

An EEG dataset from a previously published cognitive
control-related error processing study was used to evaluate
the proposed PAC measure [19]. The experiment consisted
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Fig. 3. Directed PAC networks, MV t-f PAC comodulogram,
Hilbert transform comodulogram and wavelet transform co-
modulogram for the significant theta-gamma (a) and alpha-
gamma (b) connectivity networks: (a) (b) Directed PAC net-
works ; (¢) (f) MV t-f PAC comodulograms; (d) (g) Hilbert
transform comodulograms; (e) (h) Wavelet transform comod-
ulograms

of a letter version of the speeded-reaction Flanker task [20].
A total of 19 participants were considered and the EEG re-
sponses were recorded using the 64 electrode ActiveTwo
system (BioSemi, Amsterdam, The Netherlands). The data
sampled at 512 Hz and averaged over the trials were used for
computing the mv t-f PAC.

4.2.2. EEG Data Results

As previous studies indicate increased synchronization asso-
ciated with the ERN in the time window 25-75 ms [19], mv t-f
PAC analysis was performed for the 25-75 ms time window
of the EEG data. The t-f PAC values for all possible electrode
combinations were computed, and the 64 x 64 connectiv-
ity networks were generated for delta-gamma, theta-gamma,
alpha-gamma and beta-gamma band combinations for both
error, and correct responses. 3- way tensors were generated
for both error and correct responses and the PARAFAC de-
composition was performed on both tensors, individually.
Fig.4 shows the components for each mode for the two con-

ditions. -
As shown in Fig. 4 (¢), the theta-gamma frequency modu-

lation network has the highest PAC for both error and correct
responses. The theta-gamma PAC network for both error and
correct responses are shown in Fig.5 (a) and (b). From Fig. 4,
the phase providing channels for error response are FCz, AF7,
FT7, FT8, T7, and AF4 and amplitude providing channels are
Pz, P2, and POz. Similarly, for the correct response, the phase
providing channels were FT8, AFz, and AF8 whereas the am-
plitude providing channels are C3 and CP3.

The average theta-gamma comodulograms for the two re-
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Fig. 4. The PARAFAC decomposition of 3-way tensors A

for error and correct response: (a) error response; (b) correct

response.

sponse types are shown Fig.5 (c) and (d). Significantly higher
PAC between theta and gamma bands is observed for error re-
sponse compared to correct response (p = 0.0079, Wilcoxon
Signed Rank Sum Test with alpha=0.05). This is consistent
with prior studies where dynamic PAC was reported between
theta phase and gamma amplitude for visual tasks like work-
ing memory processing and serial memory recall [7]. Sig-
nificant theta PAC during error response was also reported in
an error processing MEG study [21]. It is hypothesized that
large-scale functional integration across different frequency
bands supports flexible behavior adaption to improve the per-
formance after an error and thus results in an increase of PAC
following error response [22].
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Fig. 5. PAC networks (a-b) and comodulogram (c-d) for the
theta-gamma modulation; (a-c) Error response and (b-d) Cor-
rect response

5. CONCLUSION

In this paper, we proposed a novel time-frequency based
multivariate PAC method for estimating cross-frequency cou-
pling across multichannel recordings using PARAFAC. One
limitations is that the computational complexity of the pro-
posed method is O(N?log N) compared to the complexity
of Hilbert transform (O(N log N)). Despite the higher com-
putational complexity, the proposed method offers higher
accuracy and resolution compared to existing methods and
offers a framework to detect the frequency diversity along
with the spatial distribution of PAC. With these unique prop-
erties,proposed measure can lead to the detection of spatially
distributed networks which are operating in parallel.
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