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ABSTRACT

The electrocardiogram (ECG) is the main biomedical signal
used to diagnose and monitor cardiac pathologies. A typical
ECG is composed of quasi-periodic activations (the QRS
complexes, and the P and T waves) and periods of inactivity,
plus noise and interferences. The sparse nature of the
ECG has lead to the development of many compressed
sensing (CS) and sparsity-aware ECG signal processing
algorithms. In order to attain a good performance, these
methods require appropriate dictionaries, and several on-
line dictionary construction approaches have been devised.
However, all of them require a substantial computational cost
and the derived dictionaries are composed of atoms which
may not be representative of real-world signals. In this work,
we describe an efficient method for off-line construction of an
overcomplete and multi-scale dictionary using a clustering-
based approach. The resulting dictionary, whose atoms are
the most representative waveforms from the training set,
is then used to obtain a sparse representation of the ECG
signal. Simulations on real-world records from Physionet’s
PTB database show the good performance of the proposed
approach.

Index Terms— ECG signal processing, sparse inference,
off-line dictionary learning, hierarchical clustering, LASSO

1. INTRODUCTION

The electrocardiogram (ECG) is the main biomedical signal
used to ascertain the cardiovascular health status of many
patients, both in clinical and ambulatory settings [1]. A
typical ECG is composed of quasi-periodic activations (the
QRS complexes, and the P and T waves) and periods of
inactivity (i.e., isoelectric intervals, like PQ or ST segments),
plus noise and interferences (baseline wander, AC interference,
electromyographic noise, motion artifacts, etc.) [1, 2].

The sparse nature of the ECG has lead to the development
of many compressed sensing (CS) and sparsity-aware ECG
signal processing algorithms. In order to attain a good
performance, these methods require appropriate dictionaries
composed of atoms that properly represent the significant

Thanks to Ministerio de Economia y Competitividad of Spain for
funding through the MIMOD-PLC project (ref. TEC2015-64835-C3-3-R).

978-1-5386-4658-8/18/$31.00 ©2019 IEEE

1085

waveforms observed in the observed signals. Many approaches
have been devised for the sparse representation of single-
channel and multi-channel ECGs using different types of
simple analytical waveforms: Gaussians [3, 4, 5], generalized
Gaussians and Gabor dictionaries [6], several families of
wavelets (like the mexican hat or the coiflet4) [7, 8], etc.
Unfortunately, although these approaches can attain good
results, the obtained representations usually include many
spurious activations that must be removed, e.g., by performing
a post-processing stage [4, 8] or through the minimization of
a complex non-convex cost function [9].

Realizing that a customized dictionary, built from real-
world signals, would provide a better performance in terms of
the achieved reconstruction error for a given level of sparsity,
several on-line dictionary learning algorithms (e.g., see [10,
11]) have been developed. Some of these approaches have
been applied in the context of ECGs: the K-SVD algorithm
in [12], the shift-invariant K-SVD in [13], and the method of
optimal directions in [14]. However, these methods have a
high computational cost (due to their need to iterate between
the dictionary learning and sparse approximation stages) and
lead to dictionaries whose atoms may not be representative
of real-world signals (thus reducing the interpretability of
the sparse model, as well as the ability to easily locate the
relevant waveforms). Alternatively, an off-line dictionary
construction methodology (where a dictionary with real-
world waveforms is initially built and then directly used for
CS and sparse modeling without any further modification) has
been proposed by Fira et al. [7, 15, 16]. However, in these
approaches the atoms of the dictionary are either selected
randomly from segments of the signal or taken directly from
the first half of the ECG without any waveform selection.

In this work, we describe an efficient method to construct
an overcomplete and multi-scale dictionary for sparse ECG
representation using waveforms recorded from real-world
patients. Unlike on-line dictionary learning methods, we
first learn the dictionary off-line, and then we apply an
efficient sparse inference algorithm (CoSa [17]) to model
the signal using the learnt dictionary. As a result, our method
is much more efficient from a computational point of view
than other existing methods, thus becoming amenable to
deal with long recordings from multiple patients. With
respect to the approach of Fira er al., our method selects
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the optimal atoms to construct the dictionary, thus resulting
in a much more compact solution. Numerical simulations
demonstrate that the proposed approach is able to obtain a
very sparse representation without missing any QRS complex
or introducing spurious activations.

2. DICTIONARY CONFORMATION

The main goal of this work is to derive an efficient method to
construct an overcomplete and multi-scale dictionary whose
atoms are recorded QRS complexes extracted from actual
patients.! In order to achieve this goal, a selection of the most
representative QRS complexes available in the training set has
to be performed in such a way that the selected waveforms
represent disjoint subsets of meaningful and similar QRS
complexes. In the following, we briefly describe the database
used and the pre-processing steps performed, before detailing
the off-line clustering-based approach followed to construct
the dictionary.

2.1. Database

In order to construct the dictionary, we use the Physikalisch-
Technische Bundesanstalt (PTB) database, compiled by
the National Metrology Institute of Germany for research,
algorithmic benchmarking and teaching purposes [18]. The
ECGs were collected from healthy volunteers and patients
with different heart diseases by Prof. Michael Oeff, at the
Dep. of Cardiology of Univ. Clinic Benjamin Franklin
in Berlin (Germany), and can be freely downloaded from
Physionet [19].2 The database contains 549 records from 290
subjects (aged 17 to 87 years) composed of 15 simultaneously
measured signals: the 12 standard leads plus the 3 Frank
lead ECGs [1, 2]. Each signal is digitized using a sampling
frequency fs = 1000 Hz with a 16 bit resolution. Out of the
268 subjects for which the clinical summary is available, we
selected channel 10 (lead V4) of the first recording of the 52
healthy patients available in order to build the dictionary.

2.2. Pre-processing: Identification of QRS complexes

The pre-processing step consists in the extraction of all the
QRS complexes from each ECG in the training set. Firstly,
we apply a 4th order Butterworth bandpass filter with cut-
off frequencies f.; = 1 Hz and f., = 40 Hz to remove
noise and interferences. Forward-backward filtering, with an
appropriate choice of the initial state to remove transients, is
used to avoid phase distortion. In a second stage, each ECG
is processed for R-peak identification using the well-known

ILet us remark that we focus here on the QRS complexes because they
are the most relevant waveforms that can be found in the ECGs. However,
the proposed approach can also be applied to construct dictionaries of typical
P and T waveforms, as well as combined P-QRS-T dictionaries.

2PTB database: https://www.physionet.org/physiobank/
database/ptbdb/

Pan-Tompkins algorithm [20]. Then, each R-peak detected
is provided to an algorithm that, by previously extracting a
number of different fiducial points [21], determines the start
(1) and end (j-point) of the actual QRS complex by finding
their location using the minimum radius of curvature.

The extracted p to j-point QRS complexes are described
by a similar, but variable, number of samples. In order to
facilitate the comparison of the available QRS complexes
using the distance metric described in Section 2.3, an equal
number of samples is required for all of them. A common
approach is to select each R-peak and take into consideration
an equal number of samples on its left and right sides. This
method can even eliminate the need for resampling, provided
an equal sampling rate has been used for all the available
signals. A drawback for this approach is precisely the
simplifying (implicit) assumption that a QRS complex is
centered on the R-peak or, in other words, that the Ventricular
Activation Time represents half of the QRS duration. An
alternative method that centers each QRS complex estimation
in the R-peak but does not consider an equal number of
original samples on its left and right sides has been described
in [16]. It separately resamples the left and right R-peak sides
to achieve an homogeneous number of samples. However,
this method does not guarantee that the actual ratios of
the different waveforms and QRS complex durations are
maintained after the resamplings.

The approach followed in this work is based on resampling
each QRS complex (from p to j-point) by a variable factor
L/M, which depends on its length, to achieve a constant
final number of samples equal to the longest QRS complex
identified [22, 23]. This approach guarantees that the afore-
mentioned ratios are maintained after resampling, thus en-
abling the distance metric to quantify even the fact that waves
can have different durations. Special care has been taken
when resampling sequences to avoid edge effects produced by
the antialiasing filter, given that the QRS complexes generally
do not start and finish with zero values. A simple and effective
method has been implemented for this purpose:

1. For each QRS complex, z[n] forn = 0,1,...
two new sequences are constructed:

7N_1,

x¢[n] = xz[n] — 0], xp[n] = z[n] — [N —1].
2. The rational resampling factor for the QRS complex in

order to achieve the desired length, % is computed
and the two sequences x¢[n] and z,.[n| are resampled
to obtain the sequences Z¢[n] and Z,[n].

3. Since Z,[n] is not affected by the edge effect on its left-
hand side, whereas Z,[n] lacks any edge effect on its
right-hand side, the resampled QRS complex is finally
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2.3. QRS complexes similarity metric

In order to perform the clustering of the available QRS
complexes, a similarity metric must be selected first. Different
quantifications of similarity measures for discrete-time se-
quences, like the inverse of the distance or the cross-correla-
tion, can be applied. In this work, we have used the squared
Euclidean distance (i.e., the energy of the difference among
the two QRS complexes) to construct the clusters. Mathema-
tically, given two discretized and equal length signals, x[n]

and y[n] forn =0,1,..., N — 1, the distance expression is
N
2 2
d(x[n),y[n]) =[x =yl =Y (xn] = y[n))*.
n=1

In order to obtain a proper distance metric, the QRS complexes
considered in this work have been previously energy norma-
lized. For each discrete-time resampled QRS complex, Z[n],
the energy normalized QRS complex Z[n] is given by

SN a2

In]=—= =
1%[l2

2.4. Grouping similar QRS complexes

Many different methods to group similar elements of a set
into classes when a similarity metric is defined have been
proposed in the literature. One of the main classes of methods
is based on clustering algorithms. Among all the available
clustering algorithms, we have decided to use hierarchical
agglomerative clustering techniques, which require a lower
computational effort than divisive techniques and thus result
in more efficient methods. This group of techniques is based
on the use of a proximity matrix that quantifies the similarity
or dissimilarity of each pair of identified clusters in order
to determine cluster aggregations in each iteration of the
algorithm. A proximity matrix can be defined as a square
R x R matrix, D, whose (i,7)-th element contains the
distance (dissimilarity) d; ; = d(C;,C;) among each pair
of clusters C; and C}j for 1 <4, j < R:

0 dig di,r

deq O da.Rr
D = . . .
dr1 dro -+ 0

Agglomerative clustering is performed using the iterative
approach described in Algorithm 1.

A number of different agglomerative hierarchical clustering
algorithms exist, depending on how the distance metric
between clusters is defined. In this work, tests have been
performed using single, complete, centroid and Ward’s
linkage methods. One important issue regarding classic
hierarchical clustering methods is their lack of robustness to

Start with R singleton clusters;
Calculate the proximity matrix for R clusters;

repeat
Search for a pair of clusters C; and C;; with the
minimal distance d; ; = 1§I£1]n§ Rd(C’m, )
m#Al
Join clusters C; and C; to form a new cluster;
until the desired number of clusters remains;

Algorithm 1: Hierarchical agglomerative clustering.

outliers. The performed experiments using different methods
to calculate the distance among clusters show that outliers
tend to be kept as singleton clusters for the single and centroid
methods, while the rest of the mentioned methods do not
show experimental issues related to outliers. However, a
meaningful dictionary can still be constructed by discarding
the singleton clusters, which can be easily identified. Figure
1 shows the graphs corresponding to the case where 2 clusters
have been identified by means of hierarchical agglomerative
clustering using the single linkage method. For each cluster,
all of its elements (QRS complexes) are depicted, altogether
with the representative element obtained as described in
Section 2.5.

2.5. Selecting a representative QRS complex per cluster

Let us recall that the main goal of the proposed technique is
obtaining a dictionary of QRS complexes directly extracted
from recorded ECGs. Hence, once the desired number of
clusters has been identified, a single QRS complex from
each cluster has to be selected to conform the dictionary.
As not all the methods for hierarchical clustering use the
concept of cluster center, and even then the cluster’s center
does not necessarily correspond to an element of the cluster,
the medoid has been chosen as the representative QRS
complex of each cluster. If a cluster C' includes P elements
(c1, c2, ..., cp) and a distance metric d(c;, ¢;) is defined, the
medoid of the cluster is an element ¢,,,c40iq € C such that

P
Cmedoid = arg min Z d(ya Cp)

y€{ci,ca,...,.cp} p=1

Figure 1 shows in its upper graph the representative QRS
complexes selected as medoids for each cluster. The middle
and lower graphs show the superposed signals belonging
to each cluster, altogether with their representative QRS
complex (i.e., their medoids).

3. NUMERICAL RESULTS

In this section, we investigate the performance of the proposed
clustering-based approach to construct the dictionary. In
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Fig. 1. Two clusters with their associated QRS complexes and their representative QRS complexes (i.e., the cluster’s medoids).

Table 1. Coefficient sparsity, compression ratio (CR) and reconstruction SNR (R-SNR) vs. A and cluster number ().

K=1 K=2 K=3 K=14
A | Sparsity CR R-SNR | Sparsity CR R-SNR | Sparsity CR R-SNR | Sparsity CR R-SNR
1 66.26% 036 182dB | 81.12% 033 222dB | 87.34% 032 223dB | 9044% 034 21.8dB
2 76.76% 0.59 15.7dB | 87.64% 057 185dB | 91.78% 0.56 18.6dB | 93.77% 0.60 17.3dB
5 87.50% 146 11.3dB | 93.80% 1.74 12.6dB | 95.89% 1.69 12.6dB | 9698% 191 11.1dB
10 | 93.65% 3.09 7.7dB 96.94% 4.82 8.3dB 97.99% 432 8.4dB 98.67% 448 7.4 dB
20 | 97.53% 9.13 45dB 98.88% 9.25 49dB 99.23% 8.10 49dB 99.45% 793 4.5dB

particular, our main goal is determining the quality of the
sparse reconstruction when the dictionary is built from a set of
patients and then used to model a different set of individuals
(unlike most on-line approaches, which build a personalized
dictionary for each signal). In order to achieve this goal, we
apply the pre-processing described in Section 2.2 (bandpass
filtering and QRS extraction) to the first register from all the
healthy subjects (52) in the PTB database: patients 104, 105,
116, 117, 121, 122, 131, 150, 156, 166, 169, 170, 172-174,
180, 182, 184, 185, 198, 214, 229, 233-248, 251, 252, 255,
260, 263, 264, 266, 267, 276, 277, 279, and 284. Out of
those 52 patients, the fiducial point extraction fails in three
cases (patients 173, 245 and 284) and a total of 6266 QRS
complexes (=~ 127.9 QRS complexes per patient, with up
to 194 QRS complexes for a single patient) are correctly
extracted from the remaining 49 registers. This is the training
set used to construct the dictionary as described in Algorithm
1 with a variable number of clusters from 2 to 4.

In order to test the proposed approach, we build a test
set composed of all the available signals from those three
challenging patients where we have been unable to properly
locate the QRS complexes. Since two recordings are available
for patient 245 and three recordings have been performed

for patient 284, our test set contains 6 registers. A sparse
approximation of channel 10 in these 6 recordings is performed
using the LASSO. The recently proposed CoSa algorithm,
using several values of the sparsity parameter A\ (the higher
the value of A the sparser the solution), is used to obtain an
efficient solution of the reconstruction problem [17]. Table
1 shows the average sparsity attained in the coefficients, the
compression ratio (CR) and the reconstruction signal to noise
ratio (R-SNR) as a function of the sparsity factor (\) and
number of clusters (K). These results show the feasibility of
using a single dictionary in order to model multiple patients.

4. CONCLUSIONS

A novel, efficient, clustering-based off-line dictionary learning
approach for ECG signals (QRS complexes) has been described
in this paper. The performance of the proposed algorithm has
been validated using signals from Physionet’s PTB database,
showing that effective sparse representations of multiple
patients can be attained using a single dictionary. Future lines
include developing mega-dictionaries with other waveforms
(e.g., P and T waves), including patients with pathologies,
and learning the optimal number of clusters.
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