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ABSTRACT

Modern medical science demands sophisticated signal repre-
sentation methods in order to cope with the increasing amount
of data. Important criteria for these methods are mainly low
computational and storage costs, whereas the underlying
mathematical model should still be interpretable and mean-
ingful for the data analyst. One of the most promising models
fulfilling these criteria is based on Hermite functions, how-
ever having some important limitations for specific biomed-
ical wave shapes. We extend this model by using weighted
Hermite functions and develop a gradient based constrained
optimization method to adapt the system for different types
of signals. In order to demonstrate the potential of our ap-
proach, we consider the problem of electrocardiogram signal
compression. The experiments on the MIT/BIH arrhythmia
database show a significant improvement compared to the
former works using classical Hermite functions.

Index Terms— Signal modeling, weighted Hermite func-
tions, optimization, variable projection, ECG compression.

1. INTRODUCTION

The advances in data acquisition of biomedical signals over
the last decades have raised new challenges in various sig-
nal processing disciplines, such as waveform modeling, infor-
mation extraction, or signal compression. Depending on the
biomedical signal of interest the applications for these dis-
ciplines are manifold. Examples are modeling or denoising
single-trial evoked brain responses [1, 2], waveform learning
for modeling the variability in neurophysiological signals [3],
or waveform modeling of the electrocardiogram (ECG), on
which we will focus as a case study in the following. The
ECG is widely used for tracking and evaluating the electrical
activity of the heart, thereby providing remarkable diagnos-
tic information about the cardiovascular state of health for a
specific subject. The three main segments (QRS complex, P,
T wave) of an ECG beat usually follow a rather characteris-
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tic shape leading to the development of various mathematical
models for describing the single waves or the whole beat.

One of the most promising model was introduced by
Sörnmo et al. who used Hermite functions to evaluate QRS
shape features [4]. Based on their work the model was further
improved and applied for ECG data compression [5, 6, 7],
clustering of ECG complexes [8], detection of myocardial
infarction [9], and ECG beat segmentation [10]. The latter
work illustrates the suitability of adaptive Hermite functions
to segment and describe the waves of ECG beats individually,
thereby providing shape information in a low-dimensional
space, whereas, due to the orthogonality of the system, the
redundant information is eliminated and the important one is
kept. This is a major advantage of adaptive Hermite functions
since the extracted information allows to track (subtle) wave
shape changes over time, which could be of great medical
interest. Additionally this system is well suited for beat clas-
sification and compression tasks. Despite the many benefits
of applying Hermite functions in ECG signal processing,
there are some limitations when it comes to modeling of
atypical, special wave shapes, e.g., heart beats with ventric-
ular pacing, delta waves, or pulmonale P waves. A major
demand in case of working with ECG signals – or in general
with biomedical signals – is, that diagnostic features must not
be distorted when applying a specific algorithm. However,
this exactly happens when modeling the above examples by
adaptive Hermite functions since this system has limitations
in approximating very peaky or asymmetric waveforms.

Therefore, the contribution of this work is to extend the
mathematical model suggested in [7] with additional free pa-
rameters which allow to adjust the Hermite weight function
and consequently to model more complex wave shapes with a
higher accuracy thereby keeping orthogonality of the system.
These so called weighted Hermite functions are introduced in
Section 2 followed by the optimization of the free parameters
in Section 3, which are restricted to a feasible domain in Sec-
tion 4. In Section 5 we illustrate improvements of our work
by applying the model to ECG beat compression. However,
this is only a case study to make our work comparable. The
novel mathematical model has also the potential to be applied
to other biomedical signals, as neurophysiological signals or
evoked brain responses. Section 6 concludes the work.
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2. WEIGHTED HERMITE FUNCTIONS

Let us consider the usual weighted Lebesgue spaces L2
w(Ω)

(Ω ⊆ R) with a nonnegative weight function w : Ω →
[0,∞). For f, g ∈ L2

w(Ω) the inner product and the corre-
sponding induced norm can be defined as:

〈f, g〉w =

∫
Ω

f(t)g(t)w(t)dt , ‖f‖2 =
√
〈f, f〉 . (1)

Then there is associated a system of orthogonal polynomials
{pk | k ∈ N} that satisfy the three-term recurrence relation

pk+1(t) = (t− αk) pk(t)− βkpk−1(t), (k ∈ N) , (2)
p−1(t) = 0, p0(t) = 1 , (3)

where β0 = 〈1, 1〉w , α0 = 〈t, 1〉w/β0, and

αk =
〈tpk, pk〉w
〈pk, pk〉w

, βk =
〈pk, pk〉w

〈pk−1, pk−1〉w
(k ∈ N+) .

We denote the system of classical monic Hermite polynomi-
als by {hk | k ∈ N} for which Ω = R, w(t) = e−t

2

, αk =
0, β0 =

√
π, and βk = k/2 (k ∈ N+). The family of Her-

mite functions {Φk : k ∈ N} can be derived as

Φk(t) = hk(t)e−t
2/2 · 2k/2

/√
π1/2k! (k ∈ N),

which forms an orthonormal and complete system in L2(R)
with respect to the corresponding inner product and induced
norm (see e.g. [11]). These properties also hold for affine
transformations of these functions, which allow to define the
adaptive Hermite-Fourier series and their partial sum Sτ,λn as

Sτ,λn f(t) =

n∑
k=0

〈f,Φτ,λk 〉Φ
τ,λ
k (t) (f ∈ L2(R)), (4)

where the translation τ , and the dilation λ are free parameters
that define the functions

Φτ,λk (t) :=
√
λΦk(λ(t− τ)) (t, τ ∈ R, λ > 0) . (5)

The resulting signal representation is localized in time and
frequency due to the free parameters τ, λ, which can be found
automatically via optimization. This is a useful property that
was utilized by many authors in ECG signal processing, par-
ticularly in compression [5, 6, 7], wave shape modeling [4],
machine learning [8, 9], and segmentation [10]. Besides their
advantages, the adaptive Hermite functions have only two free
parameters, which limit the family of wave shapes that can be
described by these functions. This explains why the Hermite
functions are favored in ECG signal processing, since they
are very similar to the basic shapes of the main waves (QRS,
T, P) in a heartbeat. However, abnormal heart functioning
can imply diverse QRS, T, P waves, where the classical adap-
tive Hermite representation fails. We resolve this problem by

extending Eq. (4) with additional free parameters, which po-
tentially also allows better modeling of wave shapes different
from the ECG, e.g., ictal and interictal spikes in EEG [12], or
action potentials of cells such as neurons [13, 14].

Let p1, p2 be polynomials of degree `, m such that the
rational function u = p1/p2 is nonnegative on Ω. Now we
consider the modified real valued weight function v = u · w,
and the set of polynomials {qk | k ∈ N} which are orthogo-
nal with respect to 〈·, ·〉v . If the parameters of the weight
function v are given, e.g., zeros/poles or coefficients, then the
new system of orthogonal polynomials is defined. Here, we
confine our investigations to the modifications of the classical
Hermite weight function w(t) = e−t

2

, (t ∈ Ω = R) by using
only quadratic factors (qf), quadratic divisors (qd), symmetric
quadratic divisors (sqd) and their sums:

u1(t) = (t− x)2 , u2(t) = 1/((t− y)2 + z2) , (6)

u3(t) = 1/(t2 + s2) , u4(t) = u1(t) + u2(t) + u3(t) ,

where x, y ∈ R, z, s ∈ R+ provides the nonnegativity of
vi = ui · w. Let us denote the vector of free parameters by
η = (x, y, z, s)

T . Then, the corresponding family of modi-
fied Hermite functions {Ψi,k(·;η) : k ∈ N} for a proper in-
dex i is as follows:

Ψi,k(t;η) = qk(t)/ ‖qk‖2 ·
√
vi(t;η) (k ∈ N). (7)

Fig. 1 shows the first four elements of the new systems for
i = 1, 2, and Fig. 2(a) demonstrates the influence of the pa-
rameters, i.e., x, y modifies the center of the waves, while z, s
is for squeezing and stretching. In analogy to Eq. (5), the
set of parameters can further be extended by translation and
dilation.

We highlight that the new recurrence coefficients α̂k :=

α̂k(η), β̂k := β̂k(η) depend on the vector of free param-
eters η. There are various ways to determine α̂k, β̂k from
the old ones in Eq. (2). Here, we are applying the work of
Gautschi [15, 16], which utilizes the generalized Christoffel
theorems to calculate the recurrence coefficients with respect
to v1, v2, v3, then the recurrence coefficients corresponding to
their sum v4 is computed by [17].

3. OPTIMIZATION METHOD

In case of analog signals, Ω is a continuous interval, which
is restricted to a proper countable set for discrete-time se-
ries. Here, for the sake of simplicity, we consider Ω to be
equal to the uniform discretization of a finite time interval,
and we apply the composite trapezodial rule to calculate the
integral in Eq. (1) using N samples. Let us consider now
a discrete-time signal f ∈ RN , the vectors Ψi,k(η) ∈ RN ,
which are the modified Hermite functions in Eq. (7) uniformly
sampled along the time axis t, and the corresponding matrix
RN×(n+1) 3 Ψi(η) := (Ψi,0(η), . . . ,Ψi,n(η)). Further-
more, we will use the Moore–Penrose pseudoinverse Ψi(η)+
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Fig. 1. Examples of the modified weighted Hermite functions.

of Ψi(η), and define PΨi(η) := Ψi(η)Ψi(η)+, which is
the orthogonal projector on the linear space spanned by the
columns of Ψi(η). The projector to the orthogonal comple-
ment is P⊥Ψi(η) := I − PΨi(η). Then, the best parameters
of the new weight function vi (i = 1, . . . , 4) can be found by
solving the following nonlinear optimization problem:

min
η∈Γ

ri,2(η) = min
η∈Γ
‖f −PΨi(η)f‖22 = min

η∈Γ

∥∥P⊥Ψi(η)f
∥∥2

2
,

(8)
where Γ denotes the feasible domain that we define later. For
a certain i, ri,2 is called variable projection (VP) functional
[18]. For the sake of simplicity, we will omit the vector of
free parameters η and the index i from the notations. Then,
according to the work of Golub and Pereyra [18], the jth co-
ordinate of the gradient of this functional can be calculated
explicitly as follows:

1

2
∇r(j)

2 =
(
−
(
P⊥ΨDjΨ

+ +
(
P⊥ΨDjΨ

+
)T)

f
)T

P⊥Ψf ,
(9)

where the matrix Dj denotes the partial derivatives of the
modified Hermite functions with respect to the free param-
eters, i.e., Dj := ∂Ψ(η)/∂ηj .

Although Eq. (9) defines the gradient explicitly, it is still
difficult to compute due to the recalculation of the partial
derivatives Dj and the pseudoinverse Ψ+ at each optimiza-
tion step. Note that the new recurrence coefficients α̂k, β̂k of
qk in Eq. (7) should be also recalculated for every parameter
setup η by using a time-consuming iterative method [15, 16].
In order to avoid that we restrict the optimization to the first
element Ψi,0 of the modified Hermite system. Since q0 ≡ 1
for any weight function vi, the new recurrence coefficients
are not required to define Ψi,0(t;η) =

√
vi(t;η). Therefore,

choosing Ψ := Ψi,0 ∈ RN×1 in Eq. (9), the pseudoinverse
reduces to Ψ+ = ΨT , and the partial derivatives simplify to
Dj = ∂

√
vi(η)/∂ηj , where the vector vi denotes the uni-

formly sampled weight function. From now on, we will refer
to the resulting optimization as the reduced problem. By us-
ing this approach, one can design an orthonormal function

system, in which the first element is very similar to the origi-
nal signal f . This heuristic is sometimes satisfactory in prac-
tical applications as well. For instance, Sielużycki et al. [1]
applied Gabor functions for sparse representation of evoked
potentials, where the first element of the representation usu-
ally matched the main characteristic of the signals.

4. CONSTRAINTS

In this section, we restrict the free parameters x, y ∈ R, z, s ∈
R+ of the weight function in Eq. (6) to a feasible domain Γ
in order to ease the optimization. Recall that the modified
weight function vi is equal to ui · w, where w is a Gaussian

function e−
(t−µ)2

2σ2 centered at µ = 0 and with σ = 1/
√

2.
Since w(t) decreases much faster than ui(t) as t → ±∞,
it does not make sense positioning these waves far from the
center of the Gaussian. In order to define what “far” means
here, we will apply the well-known three-sigma rule, which
states that around 68%, 95%, 99% of the overall integral ofw
lies within the intervals [−`σ, `σ] for ` = 1, 2, 3, respectively.
Therefore, we restrict the values of the parameters x, y to the
interval Ix = Iy := [−3σ, 3σ]. Choosing x, y outside of this
interval does not significantly change the weight function and
so the system, since the corresponding quadratic factors and
divisors are smoothed out by the tails of the Gaussian.

The parameters z, s control the value of the maximum
and the width of the main lobe of the qd and the sqd fac-
tors in Eq. (6). The lower these parameters, the more peaky
the functions u2, u3. High values are not preferred, since the
resulting qd and sqd factors are so smooth they do not signifi-
cantly change the original weight function. Hence, we derive
our constraints as follows:

0.8 ·
∫ ∞
−∞

u2(t)dt ≤
∫ 3σ

−3σ

u2(t)dt, (10)

which means that main lobe of u2 cannot be too wide, i.e.,
80% of its overall integral should lie in the interval [−3σ, 3σ].
For predefined parameters y, z, one can easily show that the
definite integral on the right hand side of Eq. (10) is equal to

1

z
·
(

arctan

(
3σ − y
z

)
− arctan

(
−3σ − y

z

))
. (11)

Taking the limit for σ → ∞ gives π/z, which is the im-
proper integral of u2 over R. Substituting these results back
to Eq. (10) and simplifying by z, we can write the constraint
in the form

0.8 ·π ≤ arctan

(
3σ − y
z

)
+arctan

(
3σ + y

z

)
:= h(y, z).

(12)
An upper bound for z, s can also be given by estimating the
right hand side of Eq. (12). Note that y ∈ Iy = [−3σ, 3σ],
thus h(y, z) ≤ 2 · arctan(6σ/z), which is still less than or
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equal to 0.8π, provided that 6σ/ tan(0.4π) ≤ z. Therefore,
one can consider the interval Iz := (0, 6σ/ tan(0.4π)]. The
same applies for the sqd factor by substituting z by s and
setting y = 0, i.e., we get s ∈ Is := (0, 3σ/ tan(0.4π)].
Then the feasible domain can be defined as follows:

Γ := {η ∈ I | 0.8π ≤ h(η2, η3), 0.8π ≤ h(0, η4)} , (13)

where σ = 1/
√

2, and I = Ix× Iy× Iz× Is. In Fig. 2(b), we
give some demonstrative examples by fitting real QRS com-
plexes. Here, f̂A denotes the samples of the approximation
Sτ,λ6 in Eq. (4), where we optimized only for τ and λ. Sim-
ilarly, we got f̂W by replacing Φτ,λk in Eq. (4) with the mod-
ified Hermite functions Ψτ,λ

k , which were optimized for the
parameters of the weight function as well. For better visu-
alization, we applied a small vertical shift to the approxima-
tions. According to Eq. (14), we calculated the corresponding
reconstruction errors eA, eW , which shows that the results are
much better for the proposed method.
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Fig. 2. Demonstrating the modified Hermite system.

5. EXPERIMENTS

In order to make our work comparable we carried out ECG
data compression since it provides a good benchmark regard-
ing the distortion of the ECG signals. For that reason we
used the MIT/BIH arrhythmia database [19], which contains
48 half-hour recordings, digitized to 11 bit. As suggested by
[20] we took the first lead of 24 pre-selected recordings re-
sulting in a total length of 12 hours ECG raw data. According
to [21], the recordings were sliced into single ECG beats by
cutting the raw data 130 samples before the provided QRS
annotations, whereas beats shorter than 130 samples were not
considered. These beats were further subdivided into P, QRS,
and T by assuming the QRS duration to be 100 ms. The sin-
gle segments were then approximated using weighted Her-
mite functions, whereas the free parameters for adjusting the
weight functions were optimized once per recording for the
average of all beats. This provides an individual function
system for a specific recording, which thus allows to model

Table 1. Experimental results of 12 hours long real ECG data.

Work of [5] Work of [7] Proposed work

Rec. PRDN QRS
PRDN

CR PRDN QRS
PRDN

CR PRDN QRS
PRDN

CR System

mean 18.18 20.28 19.75 15.40 11.40 18.83 14.88 9.86 18.82 -

Selected recordings (for illustration)
100 17.09 16.57 19.47 13.09 12.09 18.52 9.78 7.74 18.52 qf
102 33.57 36.34 20.22 33.69 24.91 19.23 31.27 16.05 19.23 qd
104 31.94 39.49 19.96 34.10 37.57 18.98 29.78 20.38 18.98 qd
232 32.40 20.28 24.39 26.00 14.55 23.22 24.18 9.59 23.21 qd+qf

more complex waveforms. Subsequently, the dilation and
the translation were optimized for every beat as described in
[10] thereby representing each wave by 4 basis functions and
compensating for a possible baseline fluctuation by a linear
interpolation between the start and the end of the segment.
We want to emphasize that the preoptimized values for the
weight function can be interpreted as subject-specific param-
eters (describing the general morphology for a subject) while
the translation and the dilation coefficients are responsible for
describing the morphological changes induced, e.g., by res-
piration. All parameters needed were then compressed and
decompressed according to the work of [7]. For evaluation
we calculated the compression ratio (CR) per recording and
the average normalized percent root mean square difference
(PRDN) for M ECG beats/QRS complexes

PRDN = 100 · 1

M

M∑
m=1

||fm − f̂m||2
||fm − fm||2

, (14)

where fm and f̂m represent the raw beats/segments and their
approximations, respectively. Table 1 illustrates the compari-
son between the work optimizing only for the dilation [5], the
dilation and the translation [7], and our work. Here, the bold
row represents the main result, illustrating the average im-
provement over 12 hours ECG recordings. One can observe
that in the mean the PRDN is better for the weighted Hermite
functions while the compression ratio stays almost the same.
Additionally, we want to highlight the strong improvements
for specific recordings with more complex waveforms (100,
102, 104, 232), which strengthens advances of our work.

6. CONCLUSIONS

The proposed mathematical model is a generalization of for-
mer wave shape models, which use classical Hermite func-
tions. In order to adapt the new weighted Hermite system
to various types of signals, we developed a gradient based
optimization. Then, we speeded up the computation, by in-
troducing a reduced variation of the optimization problem,
which was restricted to a feasible domain. As a case study, we
considered ECG compression, however, our approach is of
general nature that can be utilized in many applications such
as information extraction, signal classification, detection, etc.
The MATLAB implementation of the proposed method is
available at the website [22].
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