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ABSTRACT
Individuals with Autism spectrum disorder (ASD) are known to have
significantly impaired social interaction and communication abili-
ties. These impairments are characterized by their difficulties in us-
ing and perceiving non-verbal cues, such as facial expressions. The
difficulty in processing communicators facial expressions is often
attributed to the atypical gaze patterns in individuals with ASD. We
present a computational study of gaze behavior in adolescents with
ASD during their interaction with virtual agents (avatars) in a virtual
reality based social communication platform. We study the implica-
tions on the subjects pupil response (pupil diameter changes) and
looking pattern (fixation coordinates and duration) when exposed
to the avatars demonstrating context-relevant emotional expressions.
The data related to fixation and pupil response is collected using a
commercial eye-tracker for subjects with and without ASD during
their interactions with the avatars. This data is analyzed to investi-
gate how the pupil response dynamics and fixation patterns of the
ASD group differ from their typically developing peers. Our results
indicate that communicators facial expressions can significantly af-
fect the gaze behavior of the ASD subjects. We also observe reduced
complexity in the pupil response dynamics, and lower synchrony be-
tween pupil response and fixation pattern in the ASD group.

Index Terms— Autism, emotion, virtual reality, gaze.

1. INTRODUCTION

Autism spectrum disorder (ASD) is a complex and pervasive neu-
rodevelopmental disorder characterized by significant impairment in
social interaction and communication abilities. Such impairment is
characterized by deficits in perceiving social cues from communi-
cator’s face [1], and in using and responding to various non-verbal
aspects of communication, such as facial emotional expressions [2,
3, 4]. Impairments in using and processing eye gaze in deriving non-
verbal social cues from communicator’s face is a well known char-
acteristic of Autism [5, 6, 7]. Research has shown that individuals
with ASD face difficulty in perceiving affective facial expressions,
and this difficulty is also related to their eye gaze patterns [7]. An-
other study [8] reported that individuals with ASD, while watching
videos of social scenes (social dynamic stimuli), fixate less to the eye
region and more to one’s body. Several other studies have reported
similar observations where subjects with ASD fixate more to human
body and other objects as compared to human faces [9, 10].

Recently, virtual reality (VR) based communication systems
have emerged as an effective alternative to traditional intervention
systems and education programs in Autism [11, 12, 13, 14]. Such
systems offer increased accessibility, lower cost and assessment ef-
fort, along with a safe, interactive environment for intervention and
learning. Virtual simulators, such as LIFEisGAME [13] and virtual
cafe [14], have been created to help children with ASD to improve
their emotion recognition skills and performance in social tasks.

This paper presents a computational study of gaze behavior of
adolescents with ASD during their interaction with a VR-based so-
cial communication system. In particular, we are interested in study-
ing the implications on the subjects’ eye physiological index (pupil
response measured in terms of pupil diameter changes) and look-
ing pattern (quantified by fixation coordinates and duration) when
exposed to virtual agents (avatars) demonstrating context-relevant
emotional expressions. To acquire relevant eye gaze data, we have
used a recently developed VR-based social communication platform
designed particularly to help individuals with Autism [15, 12]. This
platform creates realistic 3D environments of various social situa-
tions, where an avatar narrates a story related to a social situation
to a participant (see Fig.1 for an example). Based on the story, the
avatar asks a few questions to the participant, and the participant
answers using a menu-driven interface. The avatars were designed
to display three basic emotional expressions: happy, angry, neutral
(see Fig.1). During the course of interaction with the avatars, partic-
ipant’s eye gaze data was collected using a commercially available
eye tracking device in terms of two signals: pupil response measured
in terms of pupil diameter changes, and fixation coordinate and du-
ration. The data from each session is labeled with the corresponding
to primary emotional expression displayed by the avatar during that
session. The eye gaze data thus collected is analyzed using different
computational techniques to uncover the subtle differences in gaze
behavior between the subjects with ASD and their typically devel-
oping (TD) peers in the context of the affective facial expressions
displayed by the avatars.

We first study if the ASD and TD groups differ in the ways they
fixate on the face vs. other regions in a virtual scene. Next, we inves-
tigate the dynamics of their pupil response using an information the-
oretic measure of data complexity. We consider the hypothesis that
the pupil dynamics (a physiological signal) in subjects with ASD
will have reduced complexity compared to their TD peers. Our hy-
pothesis is motivated by the existing evidence of physiological sig-
nals being associated with atypical, and often reduced measures of
complexity under disease or disorder [16, 17]. The notion of com-
plexity is fundamental to time series data, and can be interpreted as
the rate at which new information is generated by the underlying
time varying system. Thereafter, we analyze pupil response and fix-
ation patterns jointly to understand the synchrony (coordination and
dependence) between the two signals for the ASD and TD groups.
Our major observations for the ASD group include (i) lesser fixation
time on avatar’s faces during the display of affective facial expres-
sions, (ii) lower complexity in pupil response dynamics, and (iii)
lower synchrony between pupil response and fixation pattern.

2. VR-BASED DATA ACQUISITION

The VR platform used for this work presents a realistic 3D environ-
ment of social situations, where a virtual agent (avatar) narrates a
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Fig. 1. (a) A sample social situation in the VR-based communication
system we employed for data acquisition. The scene is annotated
with two regions of interest (ROI): face and others. (b) Avatars dis-
playing happy (left), neutral (center) and angry (right) expressions.

story related to different social situations to a participant [12, 15].
The avatars narrate social stories that have been shown to help in
teaching social skills to individuals with ASD in previous studies
[18]. The avatars show context-relevant emotion during the story-
telling process, and are lip synced with prerecorded audio files for
the narration. The avatars are capable of displaying three basic emo-
tions, such as happy, angry and neutral (see Fig. 1). The graphical
user interface for the VR intervention system (VR task environment
and the 3D avatars) was designed using the VIZARD software from
Worldviz.

We recruited eight high functioning ASD and eight TD individ-
uals for our study. The ASD participants were above the thresh-
old of clinical measures for Autism i.e. Social Responsiveness Scale
[19] mean(std) = 69.1(6.9), and Social Communication Question-
naire [20]: 14.0(5.1). All TD participants were well below the clin-
ical measures. The ages of ASD participants (14.7(3.3)) and TD
participants (15.5(3.3)) were not significantly different (p = 0.33).
The participants were asked to listen to the social stories narrated
by the avatars with context-relevant emotions based on its experi-
ence in a social situation. At the end of each story, the avatar asked
few questions related to the narrated story. During each interac-
tive storytelling session, the participants’ gaze data was collected.
A lightweight wearable eye tracker (ViewPointEyeTracker- 2.9.2.5
from Arrington Research) was used to acquire this data in a time
synchronized manner with the VR task. Participants’ raw gaze data
(pupil diameter, fixation coordinates and duration) was acquired in
real time and stored in a database. Later, minor preprocessing of the
data was performed on the raw data to remove any noise due to blink-
ing and movement artifacts. Based on the recorded fixation coordi-
nates, we labeled the participants’ fixation patterns corresponding to
the two Regions of Interest (ROIs): face and others (see Fig. 1).

The participants were free to withdraw from the study had they

Fig. 2. Comparison of fixation duration (in % of total time) between
face ROI and Others ROI

felt uncomfortable at any point of time. Nevertheless, all of them
completed the study without reporting any difficulty. An exit survey
conducted at the end of the study showed that all the participants
liked interacting with our VR system and expressed interest in future
participation.

3. DATA ANALYSIS AND INTERPRETATION

Our computational study aims at understanding the differences in
gaze patterns between the ASD and TD groups as they interact with
the avatars. We first study if the groups differ in the way the fixate
on the face vs. other regions. Next, we investigate the dynamics of
their pupil response using an information theoretic measure of data
complexity. We then analyze pupil response and fixation duration
jointly to understand the synchrony (coordination and dependence)
between the two quantities for the ASD and TD groups.

3.1. Fixation on face vs. other region

As mentioned in Section 2, using the fixation coordinates, we could
differentiate between the fixation of the participants into face and
others ROIs. Fig. 2 plots the average fixation duration of the ASD
and TD subjects for the face ROI and the others ROI for the ASD
and TD groups. Clearly, ASD subjects fixate more on the regions
other than the avatar’s face while TD subjects fixate more on the
face region. This observation is consistent with previous studies on
eye gaze where ASD subjects were found to focus more on the body
of the communicator than eye region [8, 9, 10]. Also note that when
the avatars display emotional expressions, such as happy or angry,
the ASD subjects fixate even less on the face region while for the
same condition the TD subjects fixate more on the face region.

3.2. Complexity of pupil response

In this section, we investigate whether the ASD and the TD groups
have similar or differing patterns of complexity in their pupil re-
sponse. Although the interpretation of complexity varies with the
physiological parameters being studied and the developmental con-
dition being investigated, there is significant evidence for various
pathological processes being associated with atypical and often re-
duced measures of physiological complexity [16, 17, 21]. We hy-
pothesize that subjects with ASD will exhibit lower complexity than
their TD peers. To compute complexity, we use an information the-
oretic measure of dynamic complexity, called the sample entropy
[22, 23], which is often useful in the context of physiological time
series analysis. In particular, we used a multiscale variant of the sam-
ple entropy method called the refined composite multiscale entropy
(RCMSE) [23].
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Fig. 3. Complexity in pupil response of ASD and TD groups pertaining to face ROI (top row) and others ROI (bottom row). The markers
indicate the scales at which the group difference is statistically significant (p ≤ 0.05).

Given a pupil response signal P = [p1, p2, ..., pN ], we con-
struct a number of template vectors of dimension m as follows:
Pm
i = [pi, pi+1, ..., pi+m−1], where i ∈ [1, N −m]. Two template

vectors Pm
i ,P

m
j , i 6= j are considered similar if d(Pm

i ,P
m
j ) ≤ r,

where d(.) is the Chebyshev distance. Let the number of similar vec-
tor pairs in m-dimensional space be β(m)

r . We repeat this exercise
in (m + 1)-dimensional space by constructing template vectors of
dimension (m + 1) from P. Let the number of similar vector pairs
found in (m+1)-dimensional space be β(m+1)

r . The sample entropy
Se is then computed as follows:

Se(P,m, r) = − ln
β
(m+1)
r

β
(m)
r

. (1)

The above equation can be interpreted as the conditional probabil-
ity of two template vectors within the signal being similar in an
(m + 1)-dimensional space, given that they are similar in the m-
dimensional space. To extend this idea to multiple scales, we need
to construct multiple coarse grained signals Qτ from the original
signal P corresponding to different values of τ denoting different
scales as Qτ = [q1, q2, ..., qN

τ
], where qj = 1

τ

∑jτ
i=1+(j−1)τ pi. At

a given scale τ , we compute the number of similar vector pairs βmk,τ
and βm+1

k,τ ) for all k, 1 ≤ k ≤ τ for m and (m + 1)-dimensional
space. The RCMSE, denoted by S∗e , is then defined as

S∗e (P, τ,m, r) = − ln
β̄
(m+1)
k,τ

β̄
(m)
k,τ

. (2)

where β̄(m)
k,τ = 1

τ

∑τ
k=1 β

(m)
k,τ and β̄(m+1)

k,τ = 1
τ

∑τ
k=1 β

(m+1)
k,τ . Our

experiments usem = 2, τ = 1, 2, · · · , 30 and r = 0.2×σ, where σ
is the standard deviation of P. These values of r and m are chosen
based on the observations from previous studies on physiological
signal analysis [24].

We compute S∗e for each pupil response signal for each subject
at 30 different scales. At each scale, the complexity values are aver-
aged across all subjects within a group for each affective expression
displayed by the avatar. Results of this analysis corresponding to
the two ROIs are shown in Fig. 3. The markers in Fig. 3 indicate
the scales at which the group difference is statistically significant
(p ≤ 0.05 using two sample t-test). In general, if a physiological sig-
nal shows higher S∗e at the majority of scales compared to another,
it is considered to be more complex. From Fig. 3 we observe signif-
icantly reduced complexity in the ASD group for all three emotions
at the majority of the scales except for the case neutral-others ROI.
Also note that the group differences are more pronounced for the
pupil dynamics in face ROI than the others ROI, and for the happy
and angry expressions as compared to the neutral expression.

3.3. Synchrony between pupil response and fixation duration

So far, we have analyzed the pupil response as an independent quan-
tity. Since fixation duration data was obtained simultaneously during
the same interaction, it is critical to investigate if there is any mean-
ingful relationship between the two quantities. For this purpose, we
use mutual information and dynamic time warping (DTW) to study
synchrony (i.e. mutual dependence and coordination) between the
two quantities.

Mutual information: Mutual information is a measure of mutual
dependence between two random variables. It is often used to
measure the dependence between different physiological signals
[25, 26]. Mutual information quantifies the drop in uncertainty of
one variable when the other is known. Given two random quantities,
X and Y , I(X,Y ) is computed as

I(X,Y ) =
∑
x∈X

∑
y∈Y

pXY (x, y) log2

pXY (x, y)

pX(x)pY (y) (3)
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Fig. 4. Normalized mutual information (NMI) computed between
pupil response and fixation duration for the ASD and TD groups.
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Fig. 5. (a) Warping distance for individual subjects for the three ex-
pressions displayed by avatars; (b) Warping distance averaged across
all subjects. Brighter color indicates larger distance.

where pX and pY are the marginal and pXY is the joint probability
density functions. Normalized mutual information (NMI) In(X,Y )

is given by In(X,Y ) = I(X,Y )/
√
H(X)H(Y ), where H(.) is

the entropy H(X) =
∑
x∈X pX(x) log2 pX(x).

We compute NMI In(X,Y ) between pupil response (X) and
fixation duration (Y ) for different context-relevant emotional ex-
pressions displayed by the avatar. From the results in Fig. 4, we
observe that the ASD group has lower shared information between
pupil response and fixation duration (for happy and angry) indicat-
ing lower coordination between them. A two sample t-test shows
significant difference between the ASD and TD groups for happy
(p = 0.015) and angry (p = 0.005) expressions. No group differ-
ence is observed when avatars display neutral expressions.

Dynamic time warping: To investigate the synchrony between the
pupil response and fixation patterns, we employ the dynamical time
warping (DTW) method. DTW directly compares two temporal
sequences by finding the best alignment between them and com-
putes a warping distance which can be interpreted as a measure of
(dis)similarity or (lack of) synchrony.

Consider two time series of length N : X ∈ RN1 and Y ∈

RN2 . DTW finds the best warping path by optimizing the distance
between X and Y . We construct a distance matrix D ∈ RN1×N2 ,
where the elementDi,j = |xi−yj |2 measures the distance between
xi, the ith point in X and the jth point in Y i.e. yj . A warping
path W = {w1,w2, · · ·wK} is a contiguous set of elements in D
that defines a mapping between X and Y . The optimal warping
path is the one that minimizes the warping distance

∑K
k=1D(wk),

where wk is the kth element in W that defines mapping between
xi and xj . D(wk) = Di,j . The warping distance is determined
by the optimal warping path dDTW (X,Y ) = min

∑K
k=1D(wk).

The optimal path can be found using dynamic programming with
complexity O(N1N2).

We compute the warping distance between pupil response and
fixation duration sequences of each subject (see Fig. 5(a)) for each
expression. At the group level, we observe that ASD has signifi-
cantly larger warping distance (indicating less synchrony between
fixation and pupil response) for happy (p = 0.022) and angry (p =
0.034) as compared to their TD peers (see Fig. 5(b)).

3.4. Discussion

The major observations from our experiments are as follows:

• ASD subjects fixate less on the faces of the avatars and more
on the other regions, especially when the avatars display ex-
pressions of happiness and anger.

• The pupil response dynamics of ASD group shows lower
complexity as compared to the TD group. Complexity of a
signal can be interpreted as a measure of how fast new pat-
terns are generated by the underlying system. In the present
context, lower complexity may be understood as a reduced
capacity to adapt to the dynamic stimuli by generating new
patterns. This observation is consistent with the loss of com-
plexity hypothesis [27, 28], which suggests that physiological
systems exhibit lower complexity under disease or disorder.

• We observe lower synchrony between the pupil response and
fixation pattern in ASD subjects than their TD peers. This
indicates higher variability and ambiguity in the overall gaze
behavior of the ASD subjects.

• In all experiments, we note that the group difference is more
prominent as the avatars display happy and angry expres-
sions. Clearly, the gaze behavior of the ASD subjects is ef-
fected by the communicator’s facial expressions.

4. CONCLUSION

This paper presented a systematic, computational study of the gaze
behavior of individuals with Autism as they interacted with a VR-
based social communication system. We observed atypical gaze pat-
terns in ASD subjects, and quantified this atypicality further in terms
of various statistical and mathematical components. While our ex-
periments indeed present new observations and perspectives on eye
gaze behavior in Autism, since our observations are made based on
analyzing a small number of subjects with autism, we cannot gener-
alize the findings to the entire spectrum population.
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