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ABSTRACT

We present a convexly-constrained beamformer design for brain
activity reconstruction from non-invasive electroencephalography
(EEG) signals. An intrinsic gap between the output variance and the
mean squared errors is highlighted that occurs due to the presence
of interfering activities correlated with the desired activity. The key
idea of the proposed beamformer is reducing this gap without am-
plifying the noise by imposing a quadratic constraint that bounds the
total power of interference leakage together with the distortionless
constraint. The proposed beamformer can be implemented effi-
ciently by the multi-domain adaptive filtering algorithm. Numerical
examples show the clear advantages of the proposed beamformer
over the minimum-variance distortionless response (MVDR) and
nulling beamformers.

Index Terms— Electroencephalography, inverse ploblems, re-
laxed zero forcing, MVDR beamformer, nulling beamformer.

1. INTRODUCTION

Electroencephalography (EEG) is the imaging modality that pro-
vides a direct measure of the brain activity by measuring the voltage
with a set of sensors at various location on the scalp of the subject,
and the EEG inverse problem aims to localize and reconstruct the
sources of brain electrical activity from the EEG measurements. For
solving this problem, the minimum-variance distortionless response
(MVDR) beamformer has been used [1]. Here, we use the terminol-
ogy MVDR rather than the linearly constrained minimum variance
(LCMV) beamformer (which is used in [1]) since LCMV is a more
general term (see below). The MVDR beamformer suppresses the
interfering signals as well as the additive noise without distorting
the desired signal. MVDR achieves the highest signal to interfer-
ence plus noise ratio (SINR) among all linear beamformers (i.e., the
same SINR as the minimum mean squared error (MMSE) beam-
former) when the source signals are uncorrelated with each other. It
is no longer optimal, however, when the activity of the sources are
mutually correlated [2]. To overcome this issue, the nulling (zero-
forcing) beamformer has been proposed in [2–4], imposing the ad-
ditional nulling constraints to cancel the interfering activities gener-
ated from the other sources. Both beamformers are particular exam-
ples of the LCMV beamformer and can be implemented by efficient
adaptive algorithms such as the constrained normalized least mean
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square (CNLMS) algorithm [5]. While the nulling beamformer out-
performs MVDR when the signal-to-noise ratio (SNR) is high, it
performs worse than MVDR under low SNR because of noise am-
plification [4]. This means that an appropriate choice of algorithm
depends on the SNR condition. Signal correlation still remains a
challenging issue to be addressed in the brain signal processing area.
This is especially true for applications requiring online processing of
beamformer output such as brain-computer interface (BCI) [6, 7] and
source-space EEG neurofeedback, which is currently another hot
topic in brain signal processing [8, 9]. To date, the dominant beam-
forming technique used in these fields has been the MVDR beam-
former, see, e.g., [10–12]. Therefore, an introduction of a beam-
former design which suppresses efficiently interfering activity, in-
cludes as special cases the MVDR and nulling beamformers, and is
amenable to efficient adaptive implementation, should bring signifi-
cant benefit to BCI and source-space EEG neurofeedback.

In this paper, we depart the world of linearity and propose a
“convexly-constrained” beamformer that bounds the total power of
interference leakage with the target signal kept undistorted. In the
presence of correlated signals, the mean squared error (MSE) func-
tion contains a term that depends on the correlation coefficients mul-
tiplied by the filtered interfering signals. As the correlation coef-
ficients are assumed unknown in the current study, our rough idea
is to make this term vanish for avoiding the increase of MSE. Our
quadratic constraint is reasonable that enforces the total interference-
output-power below a prespecified threshold, because complete an-
nihilation of the interfering signals causes noise amplification as
mentioned already. The proposed beamformer resides between the
MVDR and nulling beamformers in general cases, containing those
beamformers as extreme cases at the two ends. Since the proposed
beamformer employs the nonlinear constraint, the classical linear
methods cannot be used for adaptive implementation. Fortunately,
however, the constraint is convex and is also simple in a certain trans-
form domain, the multi-domain method [13] can be applied for im-
plementing the proposed beamformer adaptively. Numerical exam-
ples show that the proposed beamformer achieves significant gains
over the whole range of SNR and that its performance is fairly close
to the theoretical bound (the performance of MMSE) for high SNRs.

2. NOTATION AND EEG FORWARD MODEL

Throughout, R and N denote the sets of real numbers and nonnega-

tive integers, respectively. Given any matrix A, AT denotes its tran-
pose, and σmax(A) its largest singular value. The identity matrix is
denoted by I . Given real vectors x, y ∈ R

m of arbitrary dimension

m ∈ N
∗ := N\{0}, define the inner product by 〈x, y〉 := xTy, and
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the induced norm by ‖x‖ := 〈x,x〉
1
2 . The expectation is denoted

by E(·).
We now present the EEG forward model studied in this paper.

We consider s dipole sources of brain activity and measurements at
a specified time interval using an array of n EEG sensors. The EEG
measurements at time instant k ∈ N is modeled as

y(k) =
s∑

i=1

h(θi)qi(k) + n(k) ∈ R
n
. (1)

Here, h(θi) ∈ R
n is the leadfield vector of the ith source for θi =

{ri,ui}, where ri is the source position and ui is the orientation
unit vector for the ith source, qi(k) ∈ R the electric/magnetic dipole
moments of the ith source at time instant k, and n(k) ∈ R

n the
noise vector representing background brain activity along with noise
recorded at the sensor array. Without loss of generality, q1(k) is
supposed to be the activity of the desired source, and qi(k) for i =
2, 3, · · · , s are the activities of interfering sources, which possess
time correlations with the desired source.

All the source activities and noise are assumed zero-mean
weakly-stationary stochastic processes. The source activities are
supposed to change in time, but their positions and orientations
are assumed known and remain the same during the measurement
period. We also assume that the source activities qi(t) are mutu-
ally correlated but are uncorrelated with the noise n(k). In the
present study, we assume no knowledge about the correlations; i.e.,
E[q1(k)qi(k)]s are unknown for i = 2, 3, · · · , s .

The aim of the EEG inverse problem for the forward model (1)
is to reconstruct the activity of the desired source q1(k) from the
measurements y(k), given the known positions of the sources. A
major approach to this problem is the beamforming, which processes
the received vector by a spatial filter w ∈ R

n as

q̂1(k) = w
T
y(k).

Here, q̂1(k) is the estimate of the activity of the desired source q1(k).

3. THE PROPOSED BEAMFORMER DESIGN

We present the beamformer design for the inverse problem in the
presence of correlated interferences and also its adaptive implemen-
tation based on the dual-domain adaptive algorithm (DDAA).

3.1. Relaxed Zero-forcing Beamformer

Under the present settings, the MSE function can be written as fol-
lows:

JMSE(w) := E
[(
w

T
y(k)− q1(k)

)2]

= E[(wT
y(k))2 − 2q1(k)w

T
y(k) + q

2
1(k)]

= E[(wT
y(k))2]

︸ ︷︷ ︸

output variance

+ E[q21(k)]
︸ ︷︷ ︸

signal power

−2E[q21(k)]w
T
h(θ1)

−2
s∑

i=2

E[q1(k)qi(k)] w
T
h(θi), (2)

In the absence of correlated activities, the fourth term of (2) disap-

pears, and hence, under the distortionless constraint wTh(θi) = 1,
the minimum output variance beamformer coincides with the MMSE
beamformer. In the presence of correlated activities, however, those
two beamformers can be significantly different due to the fourth
term.

In this case, one may consider to annihilate the fourth term

by imposing the nulling constraints wTh(θi) = 0 for all i =

2, 3, · · · , s. This is actually the nulling beamformer. Unfortunately,
the nulling beamformer is known to amplify the noise, performing
poorly under highly noisy environments. We thus propose to bound
the leakage of the interfering activities by some threshold ǫ ≥ 0,
rather than annihilating the interfering activities completely. The
proposed beamformer is formally given as follows:







minimize E[(wT
y(k))2] (3)

subject to

{
wTh1 = 1 (⇔ w ∈ C)
‖HT

Iw‖2 ≤ ǫ (⇔ HT

I w ∈ Bǫ)
(4)

where HI := [h(θ2) h(θ3) · · ·h(θs)] is a channel matrix contain-
ing the leadfield vectors of interferences as its columns, and

C := {w ∈ R
n : wT

h(θ1) = 1} (5)

Bǫ := {s ∈ R
s−1 : ‖s‖2 ≤ ǫ}. (6)

In words, the proposed beamformer minimizes the output vari-
ance under a distortionless constraint and a bounded interference-
leakage constraint. The solution to this problem is given by

wRZF =
R−1

ǫ h1

hT

1R
−1
ǫ h1

, where Rǫ := E[y(k)y(k)T]+τǫHIH
T

I and

τǫ ≥ 0 is the Lagrange multiplier depending on the relaxation pa-
rameter ǫ. We refer to this bounded leakage beamformer as relaxed
zero forcing (RZF) beamformer.

The RZF beamformer has been studied first in [14, 15] with
a completely different motivation under the assumption (different
from the present study) that the source signals are assumed mutu-
ally uncorrelated. Indeed, those previous studies show that the side
information about the interference channel guides the update direc-
tion of adaptive beamformer towards the MMSE beamformer and
accelerate the convergence speed significantly, although the MVDR
beamformer is optimal in the MSE sense under the distortionless
constraint in this case. The current work provides the first study of
the RZF beamformer for correlated activities, revealing its consid-
erable advantages over the conventional beamformers. For ǫ = 0,
the RZF beamformer reduces to the classical nulling beamformer.
For ǫ sufficiently large (larger than the total interference leakage of
MVDR), RZF reduces to the MVDR beamformer. The RZF beam-
former is thus a generalization of the classical MVDR and nulling
beamformers. Note that those beamformers solely contain linear
constraints, while our beamformer involves both linear and quadratic
constraints. As shown in Section 4, RZF significantly outperforms
the MVDR and nulling beamformers for an appropriately chosen ǫ.
The RZF beamformer can be implemented efficiently by the dual-
domain adaptive algorithm [13] as described in the following.

3.2. Dual-domain Adaptive Algorithm

Given any closed convex subset K of a Euclidean space R
m of an

arbitrary dimension m, the metric projection PK(x) of a point x ∈
R

m onto K is defined by PK(x) := argminy ‖x− y‖. (The pro-

jection is the nearest point of x in K.) The constraint HT

Iw ∈ Bǫ in
(4) is not simple in the domain of w, but it is simple in the transform

(dual) domain under the transformation by HT

I (i.e., the projection
PBǫ

(s) is easy to compute for any s ∈ R
s−1). Given an initial

beamforming vector w0 ∈ R
n, the DDAA update equation is then

given as follows:

wk+1 := wk + λkµk

(

αkf
(1)
k

+ (1− αk)f
(2)
k

)

, k ∈ N, (7)

where λk ∈ (0, 2) is the step size, and αk ∈ [0, 1], f
(1)
k

:=

PVk
(wk)−wk for Vk := C ∩ {w ∈ R

n : wTy(k) = 0}, f
(2)
k

:=
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Fig. 1. MSE performance of the MVDR, nulling, and RZF beam-
formers under SIR = 0 dB in the cases of (a) low correlation and (b)
high correlation.
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Fig. 2. MSE performance of the MVDR, nulling, and RZF beam-
formers under SNR = 0 dB and low correlation (ρ = 0.3).

PBǫ

(
HT

Iwk

σ1(HI)

)

−
HT

Iwk

σ1(HI)
, and µk :=

αk

∥
∥f

(1)
k

∥
∥2

+(1−αk)

∥
∥f

(2)
k

∥
∥2

∥
∥
αkf

(1)
k

+(1−αk)f
(2)
k

∥
∥2

if
∥
∥αkf

(1)
k

+ (1 − αk)f
(2)
k

∥
∥2

6= 0, µk := 1 otherwise. The vector

f
(1)
k

contributes to reducing the output variance in (3), while f
(2)
k

contributes to reducing the violation of the quadratic constraint of
(4). See [13, 15] for detailed properties of the algorithm.

4. NUMERICAL EXAMPLES

We present the numerical examples to show the efficacy of the RZF
beamformer and its adaptive implementation in the presence of cor-
related interferences. Namely, we simulate the case of reconstruct-
ing activity of source of interest from a HydroCel Geodesic Sen-
sor Net utilizing 128 channels as the EEG cap layout. FieldTrip
(FT) toolbox [16] is used to aid generation of volume conduction
model (VCM) and leadfields. We generate the activity q1(k) of
the desired source by autoregressive (AR) models of order 6, and
all of the coefficients for each order are set to 0.2. The number of
sources is set to s := 37, and each interfering activity is generated
as qi(k) = γq1(k) + ηni(k), γ > 0, η > 0, i = 2, 3, · · · , s,
where ni(k) follows independently and identically distributed (i.i.d.)
standard normal distribution. The strength of correlations among ac-
tivities is measured by an average correlation coefficient ρ ∈ [−1, 1]
between the desired activity and the interfering ones. We consider
the two cases: the low correlation case (ρ = 0.3 with γ := 0.2 and
η := 0.65) and the high correlation case (ρ = 0.9 with γ := 0.2
and η := 0.1). The SNR and signal to interference ratio (SIR) are
defined as the ratios of the power of desired signal projected onto
sensors to the power of noise and interferences counterparts, respec-
tively. Throughout the experiments, the power of the desired signal
is fixed and those of the interference and noise are changed depend-
ing on SNR and SIR, respectively. The relaxation parameter ǫ of
RZF is optimized for each SNR and SIR.

4.1. Performance of RZF Beamformer

We compare the MSE performances of the RZF, MVDR, nulling and
MMSE beamformers.

Performance for different SNR: Figure 1 shows the results for SIR
= 0 dB under different SNR conditions in the cases of (a) low cor-
relation (ρ = 0.3) and (b) high correlation (ρ = 0.9). In both cases,
RZF achieves significant gains compared to the MVDR and nulling
beamformers. It is also seen that its performance is fairly close to the
theoretical bound (that of the MMSE beamformer) in the high SNR
range when ρ = 0.3.

Performance for different SIR: Figure 2 shows the results for SNR
= 0 dB under different SIR conditions in the case of low correlation
(ρ = 0.3). (The results are similar in the case of high correlation
(ρ = 0.9).) One can see that the RZF beamformer achieves signifi-
cant gains this time again.

Powers of noise and interference leakage: Figure 3 shows the
powers of noise and interfering activities remaining in the beam-
former output for SNR = SIR = 0 dB. Referring to Figure 3(b),
one can see that the proposed RZF beamformer attains an excellent
tradeoff; it reduces the noise leakage by allowing a slight leakage (in-
visible in the figure) of the interfering activities. Referring to Figure
3(a), the total leakage of RZF is even smaller than the noise leakage
of MVDR. This is further analyzed below.

Sensitivity to the choice of ǫ: Figure 4(a) plots the MSE perfor-
mance of RZF for each relaxation parameter ǫ for SNR = SIR = 0
dB and ρ = 0.3. Within the range of 1.34 < ǫ < 3.32 × 102, the
MSE of RZF is below 30 dB. This implies that RZF is reasonably in-
sensitive to the choice of ǫ. In addition, whenever δ > 1.91× 10−2,
RZF performs no worse than the MVDR and nulling beamformers.
Figure 4(b) presents more precise information, plotting the power of
noise/interference leakage contained in the beamformer output for
different ǫ values. It is seen that both noise and interference can be
suppressed simultaneously by RZF for an appropriately chosen ǫ.
This supports the results of Figure 3(a) in which both noise and in-
terference of RZF have smaller powers than the MVDR and nulling
beamformers.
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Fig. 3. Power of the noise/interference leakage for MVDR, nulling,
and RZF beamformers under SNR = SIR = 0 dB in the cases of (a)
low correlation and (b) high correlation.
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tained in the beamformer outputs.

4.2. Adaptive Implementation of RZF by DDAA

We compare the MSE performances of the RZF beamformer im-
plemented by DDAA, the MVDR and nulling beamformers imple-
mented by the CNLMS algorithm [5]. The step sizes for all online
algorithms are set to λk := 0.005, and the weight for DDAA is set
to αk := 0.03.
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Fig. 5. MSE performance of RZF implemented with DDAA, MVDR
and nulling implemented both with CNLMS under SIR = 0 dB in
the case of low correlation (ρ = 0.3).

Figure 5(a) plots the steady-state MSE of each algorithm for SIR
= 0 dB and ρ = 0.3 under different SNR conditions. One can
see that each beamformer is successfully implemented adaptively by
each adaptive algorithm. Figure 5(b) plots the learning curves for
the case of SNR = 0 dB. (For visual clarity, the MSE values are
averaged over the previous 3000 iterations.) It can be seen that the
MSEs of the adaptive algorithms for the RZF and nulling beamform-
ers converge reasonably fast to those of the analytical solutions, re-
spectively. In contrast, MVDR implemented by CNLMS converges
slowly due to no use of the channel information of the interfering
activities.

5. CONCLUSION

We presented the RZF beamformer which minimizes the output
variance under the constraints of bounded interference leakage and
undistorted target signal. In the reconstruction problem of brain
activity from EEG measurements, there exist correlated interfering
activities which yield an intrinsic gap between MSE (unavailable)
and the output variance (available). The relaxed zero-forcing con-
straint successfully reduces the gap without amplifying the noise.
We also presented an adaptive implementation of the proposed RZF
beamformer based on the dual-domain adaptive algorithm. Nu-
merical examples showed that RZF significantly outperformed the
MVDR and nulling beamformers.
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