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ABSTRACT

Scanning Electron Microscopy (SEM) is a popular high resolution
imaging modality for biological samples that has recently been ap-
plied to neural circuit reconstruction. For this application, relatively
large volumes are imaged by repeatedly ablating away the exposed
surface of the volume with a focused ion beam (FIB), which can
cause beam-aligned striping artifacts in images of the remaining lay-
ers. We present an automatic pipeline designed to detect and correct
for such striping artifacts while minimally degrading the unknown
artifact-free image. The proposed method addresses this problem by
computing a data-driven mask for the corrupted frequency band and
subsequently solving a variational formulation of the image recon-
struction problem using efficient methods from convex optimization.
Results on simulated and real data show state-of-the-art denoising
performance.

Index Terms— stripe-artifacts removal, total variation, non-
linear filtering, scanning electron microscopy.

1. INTRODUCTION

Originally developed for materials science research, Focused Ion
Beam Scanning Electron Microscopy (FIB-SEM) has been used in
recent years to probe biological structures. The isotropic spatial res-
olution achieved by FIB-SEM (nanometers) makes it the imaging
modality of choice used for the reconstruction of insect neural cir-
cuit (connectomics) [1]. In this imaging technique, a sequence of
ablations of the fine layer of material using a focused ion beam al-
ternates with an electron microscopy step to image the newly ex-
posed surface. Although the ion beam allows for fine cuts of the
surface leading to high z-resolution, it leaves unidirectional striping
artifacts by carrying heavy metal atoms down the surface, Fig. 1(a).
The effectiveness of the machine learning techniques for segmenta-
tion of the FIB-SEM images is greatly reduced when such artifact is
present. Additionally, these artifacts can be severe and may create
images incomprehensible for human annotators.

There are many different methods for stripe removal. Exam-
ples range from using simple filtering techniques to remove the af-
fected frequency band of the images [2] to combining wavelet and
Fourier filtering techniques to exploit the unidirectional structure
of the stripes [3, 4]. However, these techniques require the design
of precise hand-crafted filters and do not utilize the properties of
the underlying image. Related popular methods for denoising with
structured noise also utilize curvelets and shearlets [5, 6] and dictio-
nary learning [7]. Another approach, used in geoscience and remote
sensing applications, is to formulate and solve an ill-posed inverse
problem [8]. Methods in this family assume a low-rank prior on
the structure of the stripes and utilize low-rank and sparse decom-
position techniques. However, the low-rank assumption only holds

when the stripes cover the entire field of view, which is not the case
in FIB-SEM imaging.

Our goal in this work is to leverage signal processing techniques
to correct the striping artifacts in FIB-SEM images while keeping
the true underlying structures (approximately) intact. The proposed
pipeline utilizes the properties of the stripes in the Fourier domain
to automatically detect the corrupted frequency band (Sec. 2.1). The
proposed framework then admits different variational formulations
of the inverse problem allowing for a trade-off between speed and
simplicity of the method on one hand and accuracy on the other
(Sec. 2.2). Additionally, the proposed methods take both frequency
and image domain properties of the data into account. Results on
simulated and real data show state-of-the-art denoising performance
(Sec. 3). Although this study focuses on FIB-SEM, the developed
framework is general and can be easily extended to other imaging
modalities.

2. PROBLEM FORMULATION AND SOLUTION

Given Nd image “slices” and supposing each two-dimensional (2D)
slice image is of size Nh × Nv , we formally model the observed
volumetric image Y ∈ [0, 1]Nh×Nv×Nd by decomposing it as

Y = Z + B + N (1)

where Z, B, and N are the (unknown) true underlying image, ad-
ditive stripe artifacts, and additive standard Gaussian noise, respec-
tively. Based on the data (Fig. 1(a)) we assume that the underlying
image Z is locally smooth with sparse gradient, and that its edges
have no strong direction preference such that the image may be con-
sidered in a sense isotropic. We also assume that the stripes in B
are unidirectional with preferred direction in the xy-plane, though
each stripe need not necessarily span the entire image. Additionally,
we assume that each stripe is smooth in the longitudinal direction.
Our goal is to recover Z given only Y, which we accomplish by
first detecting a mask that roughly isolates the stripes B in Fourier
space and then solving a variational image reconstruction problem
based either on annihilating corrupted frequency bands (simple and
fast) or on solving a convex optimization problem (high accuracy)
depending on application demands.

2.1. Detecting corrupted frequency coefficients

As the stripes are unidirectional, most of the spectral energy of B is
contained in a narrow frequency band perpendicular to the direction
of the stripes (e.g., for vertical stripes as in Fig. 1(a), most of the
frequency content is near the horizontal axis as in Fig. 1(b)). This
motivates our approach for detecting the corrupted frequencies of
the image. Taking the 2D Fourier transform of each slice of Y, we
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Fig. 1: (a) A noisy image (b) its FFT with a single annulus high-
lighted in blue. (c,d) Histograms of magnitude and phase of the coef-
ficients inAr; we can empirically observe that they follow Rayleigh
and uniform distributions, respectively. (e) Scatter plot of coefficient
magnitudes versus polar angle on the annulus.

denote the result as Ŷ , F2 Y ∈ CNh×Nv×Nd with slices
Ŷk ∈ CNh×Nv . With this, the proposed framework computes a
data-driven binary mask Ω ∈ {0, 1}Nh×Nv×Nd (where Ωijk = 1

indicates that the corresponding Fourier coefficient Ŷijk is likely
corrupted by the stripes) as follows.

In contrast to the unidirectional stripes, the image is assumed
isotropic, so it is natural to consider the image statistics on an annular
domain in frequency space. For each slice k, we begin by covering
the frequency domain of Ŷk with non-overlapping thin concentric
annuli. Let Akr be Fourier coefficients in a thin annulus of radius r
and width δ centered at the frequency origin (i0, j0, k),

Akr =
{

Ŷ(x+i0)(y+j0)k | (r − δ)2 ≤ x2 + y2 ≤ (r + δ)2
}
. (2)

Except in the corrupted band, the coefficients in each Akr (except in
the small corrupted band) empirically follow a 2D Gaussian distri-
bution with parameters µ and Σ that can be robustly estimated using
standard methods. We whiten each element aijk ∈ Akr by subtract-
ing the mean and multiplying it by the precision matrix, denoting the
result as ãijk ∈ Ãkr .

After whitening, the magnitude of these complex numbers there-
fore follows a standard Rayleigh distribution. As an example, Fig.
1(b,c,d) show a sample annulus and histograms of the magnitude and
phase of the Fourier coefficients in it. In Fig. 1(e), we take each co-
efficient in the annulus and give a polar plot of its magnitude versus
its angle along the ring, which shows that corrupted coefficients have
higher magnitude and do not follow the estimated Gaussian distribu-
tion. As a result, the tail of the corresponding Rayleigh distribution
provides a reliable test measure for the hypothesis that any given co-
efficient in Ãkr follows the Gaussian distribution and hence, is not
corrupted. Then, we form an outliers map P using the test

Pijk =
{

1[S(|ãijk|)≤ε] | ãijk ∈ Ã
k
r

}
, (3)
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Fig. 2: (a) p-values (in log-scale) from survival function of the
Rayleigh distribution, see Eq. (3). (b) Probabilities from Eq. (6) for
boxes/rectangles of different sizes.

Alg. 1: Frequency Mask Detection

1 Input: Y and ε;
2 for k = 1, · · · , Nd do
3 Ŷk ← F2Yk;
4 Populate the outliers map P using eqs. (2) and (3);
5 θmin ← argmin

θ
B(#{c = 1 | c ∈ Ckθ };#Ckθ , pk);

6 P ← rotate (P,−θmin);
7 Bmin ← argmin

B
B(#{c = 1 | c ∈ CkB};#CkB , pk);

8 for (i, j) ∈ Bmin do Ω(i, j, k)← 1 ;

9 Output: θmin, Ω;

where S(x) = exp(−x2/2) is the survival function of the standard
Rayleigh distribution. Pijk = 1 indicates that the Fourier coefficient
at position ij in slice k is an outlier with respect to our Gaussian
assumption. Fig. 2(a) shows the p-values for a slice.

The distribution of the p-values in the corrupted region is dif-
ferent than other sub-regions. Let θ be an orientation and B be a
rectangle within the slice. We then define sets

Ckθ = {Pijk | i cos θ + j sin θ = 0} , (4)

CkB = {Pijk | Btop ≤ i ≤ Bbottom ∧Bleft ≤ i ≤ Bright} . (5)

We can test whether the number of outliers in a given subset Ck
(which can be either a box or an orientation) of P is surprisingly
high compared with the total number of outliers in P . We perform
that test using the probability

B(#{c = 1 | c ∈ Ck};#Ck, pk), (6)

where pk =
∑
ij Pijk/(Nh · Nv) and B indicates the tail of the

binomial distribution.
The detection procedure, presented in Alg. 1, works as follows.

We first use Eq. (3) to create an outliers map. We detect the orienta-
tion for which we observe maximal deviation from the null hypoth-
esis. We then rotate the outliers map so that the maximal deviation
is now aligned with the horizontal axis. Then we repeat the maxi-
mal deviation test using boxes. The selected box provides the region
where the Fourier coefficients maximally deviate from the Gaussian
assumption.

Note that we could use Eq. (6) to test whether the slice is cor-
rupted with stripe-artifacts by setting a threshold on the probability.
When we know that the images are indeed corrupted, as is the case
of this work, we omit such test.
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Alg. 2: Dykstra’s projection algorithm applied to Eq. (7)

1 Input: Y and Ω;
2 Ẑ← F2Y; UΩ ← 0; Uι ← 0;
3 while not converged do
4 Z← F−1

2 PΩ

(
Ẑ + UΩ

)
;

5 UΩ ← Ẑ + UΩ − PΩ

(
Ẑ + UΩ

)
;

6 Ẑ← F2P[0,1] (Z + Uι);
//P[0,1] is a clipping operator

7 Uι ← Z + Uι − P[0,1] (Z + Uι);

8 Output: Zest = Z;

2.2. De-striping as an inverse problem

We can estimate Z in Eq. (1) by solving an inverse problem using the
detected mask and the prior assumptions. Directly annihilating the
corrupted frequency band would produce an estimate with pixel val-
ues outside the desired range. Intuitively, the desired result should
be similar to the noisy image outside the corrupted frequency band,
should be zero inside the corrupted frequency band, and its values
should be in the range [0, 1]. We thus solve the minimization prob-
lem

Zest = argmin
Z
‖Z−Y‖2F s.t.

PΩ (F2Z) = 0,

Zij ∈ [0, 1] ∀i, j,
(7)

where the projection operator PΩ(·) sets to zero the values inside
the frequency mask Ω (found in the previous section). The solution
to Eq. (7) can be obtained by applying Dykstra’s projection algo-
rithm [9], which finds the closest point to the initial point, Y, in the
intersection of both convex sets. The details of the method are pro-
vided in Algorithm 2. We name the mask detection followed by Alg.
2 FFT-RingV1.

An alternative approach that makes better use of the image prop-
erties is the following formulation. It is desired that the output im-
age be similar to the underlying structure, have the same range of
values, and match the noisy image outside the corrupted frequency
band. Following our assumptions in Sec. 2, we also enforce sparsity
of the image gradient and longitudinal smoothness of the stripes (we
assume that they are vertical as we can use θmin from Alg. 1 to rotate
the images). Formally,

min
Z
‖Ωc ◦ (αF2Z−F2Y)‖2F︸ ︷︷ ︸

data fidelity outside the mask

+λx ‖|DZ|‖1︸ ︷︷ ︸
local smoothness

+ λz ‖Lv(Z−Y)‖2F︸ ︷︷ ︸
second order vertical changes

+
∑
i,j,k

ι[0,1] (Zijk) ,︸ ︷︷ ︸
keep pixels in range

(8)

where: ‖|DZ|‖1 =
∑
i,j,k((DhZ)2ijk+(DvZ)2ijk+(DdZ)2ijk)

1/2

with Dh,Dv,Dd being the horizontal, vertical, and depth deriva-
tive operators, respectively [10]; Lv is the vertical Laplacian, i.e.,
second derivative in the vertical direction only; ◦ denotes the entry-
wise product; Ωc is the complement of the detected frequency mask,
formed by stacking the individual 2D masks; and ιC(·) is the indica-
tor function of the convex set C [9]. Additionally, λx and λz param-
eterize the amount of reqularization and therefore control the trade-
off between smoothing and stripe removal. Parameters are tuned
using grid search over a reasonable set of values and validated using
cross-validation. Parameter α scales the frequency domain variables

Alg. 3: ADMM applied to Eq. (9)

1 Input: Y, Ωc, λx, λz , ρ1, ρ2, ρ3, α;
2 Ŷ ← F2Y; X← DY; Z← Y; Z̃← Y;

Ẑ← F2Y; UZi ← 0; UX ← 0; Ũ← 0;
3 while not converged do

//Main operations detailed in comments

4 Ẑ← argmin
A
L(A, Z̃,Z,X); //diag. syst. solve

5 Z̃← argmin
A
L(Ẑ,A,Z,X); //diag. syst. solve

6 Z← argmin
A
L(Ẑ, Z̃,A,X); //element clipping

7 X← argmin
A
L(Ẑ, Z̃,Z,A); //soft-thresholding

8 UX ← UX −DZ̃;

9 UZ ← UZ + Z−F−1
2

(
αẐ
)

;

10 Ũ← Ũ + Z− Z̃;

11 Output: Z;

to the order of image domain ones. The problem is convex and the
solution can be obtained using a splitting method such as Alternat-
ing Direction Method of Multipliers (ADMM) [9, 11]. Eq. (8) can
be rewritten as

min
Ẑ,X,Z,Z̃

∥∥∥Ωc ◦
(
αẐ− Ŷ

)∥∥∥2

F
+ λx ‖|X|‖1

+ λz

∥∥∥Lv(Z̃−Y)
∥∥∥2

F
+
∑
i,j,k

ι[0,1] (Zijk)

s.t. αF−1
2 Ẑ = Z, DZ̃ = X, Z̃ = Z.

(9)

The equality constraints are removed by introducing the ADMM
dual variables UZ , UX , and Ũ and forming the scaled augmented
Lagrangian,

L(Ẑ, Z̃,Z,X) =
∥∥∥Ωc ◦

(
αẐ− Ŷ

)∥∥∥2

F
+ λx ‖|X|‖1

+
∑
i,j,k

ι[0,1] (Zijk) + λz

∥∥∥Lv(Z̃−Y)
∥∥∥2

F

+
ρ1

2

∥∥∥αF−1
2 Ẑ− Z + UZ

∥∥∥2

F

+
ρ2

2

∥∥∥DZ̃−X + UX

∥∥∥2

F

+
ρ3

2

∥∥∥Z̃− Z + Ũ
∥∥∥2

F
. (10)

The algorithm iteratively minimizes the augmented Lagrangian with
respect to each variable and updates the duals, see Algorithm 3. We
name the mask detection followed by Alg. 3 FFT-RingV2. Note that
each sub-problem can be solved very efficiently in closed-form. The
first two sub-problems involve solving linear systems of equations,
efficiently done using element-wise operations. Additionally, the
sub-problem involving the total variation term is solved via element-
wise vector soft-thresholding [10].

3. EXPERIMENTAL RESULTS

Synthetic experiments. In this section, the proposed methods are
compared to some existing ones in the literature. In order to sim-
ulate the striping noise, an anisotropic Gabor filter at different lo-
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Original image Noisy image

FFT-RingV2 VSNR

FFT-RingV1 Wavelet-FFT

Fig. 3: Visual Results of different algorithms.

cations is used as in previous literature [12, 13]. In addition to sat-
isfying the desired properties, this noise model allows for compar-
ison with the Variational Stationary Noise Remover (VSNR) [12]
and wavelet-FFT [3] methods. The Gabor function convolved with a
simulated Bernoulli process forms the stripe artifacts. The simulated
artifact is added to a clean region of the dataset. For the wavelet-FFT
method five levels of Daubechies-42 filters were used. Table 1 shows
the calculated peak signal-to-noise ration (PSNR) values for differ-
ent methods averaged over 30 trials leveraging different instances of
simulated noises and clean images from FIB-SEM dataset.

As results in Fig. 3 and Table 1 show, FFT-RingV1 as in Eq. (7),
performs similarly to the filtering approach and outperforms the
wavelet-FFT method. FFT-RingV2, Eq. (8), outperforms all the
methods by visual and numerical measures.
FIB-SEM images. In this section we present results of the proposed
framework for the artifacts in actual FIB-SEM dataset. In a real-
world scenario, variations of the artifact throughout the cube make
other approaches inapplicable and the frequency detection crucial to
the recovery process. A single slice of the noisy block and corre-
sponding denoised images using both developed methods are shown
in Fig. 4. These results are obtained by detecting the Fourier domain
mask for each slice of a 3D cube of data and applying the image re-
construction methods. Parameters are tuned by grid search across
a set of reasonable values and confirmed by cross-validation. For

Table 1: PSNR (mean±std) [dB] for different methods ap-
plied to images contaminated with synthetic striping artifacts.
PSNR , max (Zest)

2 /‖Z− Zest‖F .

wavelet-FFT FFT-RingV1 VSNR FFT-RingV2
24.6± 0.3 25.55± 0.2 25.7± 0.2 26± 0.16

(c)

(b)(a)

Fig. 4: One slice of (a) noisy, (b) denoised with FFT-RingV1, and
(c) denoised with FFT-RingV2. In the lower right, we show zoomed
regions and one horizontal scan line of each zoomed image. Better
matching to the dark region.

these results, ε = 10−3, λx = 1−2, α = 107 and λz = 10−1 were
used. As shown in Fig. 4, FFT-RingV2 has better recovery results
when the stripes are passing through a dark region.

4. CONCLUSION

In this study we proposed two methods for removing striping arti-
facts from the FIB-SEM images. The proposed pipeline leverages
the frequency domain properties of the artifacts to detect the cor-
rupted band. A simple and fast solution is obtained by annihilating
the corrupted band while keeping the range of values in the image
domain intact. This approach yields results of good quality. If supe-
rior quality is needed, we presented an alternative inverse problem
that uses the image properties exhaustively, both in the image and
frequency domains. These proposed methods, when applied to sim-
ulated and real data, showed successful results that outperform other
approaches both in visual and numerical measures.

In future work, we aim to use the developed framework to help
connectomics research achieve better recovery of neural circuits by
introducing it into the image segmentation pipeline and as a pre-
processing tool for human annotators. Additionally, the proposed
methods for mask detection and associated inverse problem could
be applied to other imaging modalities. Finally, we wish to explore
the use of non-convex penalty terms in the inverse problems, which
have shown to be successful in other applications.
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