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ABSTRACT

In ultrasound imaging, one typically employs delay-and-sum (DAS)
beamformers for image reconstruction. An apodization window is
used to suppress the side-lobes of an array beam pattern. The applica-
tion of an apodization window to suppress the side-lobes widens
the main-lobe width. We consider a statistical beamformer and
present two variants. The signal of interest is modeled as a Laplacian-
distributed random variable and additive interference components as
Gaussian distributed. The resultant LASSO formulation is known
to suffer from underestimation of large signal amplitudes due to
the `1-norm regularization. In the first variant, we reformulate the
LASSO problem with a minimax-concave penalty (called Sparsity
AMplified (SAM)) to contain the bias, thereby enhancing the beam-
formed image. A closed-form pointwise estimator is obtained for the
optimization problem. In the second variant, we propose Sparsity
AMplified Iteratively-Reweighted (SAMIR) beamforming algorithm,
which leverages the properties of an apodization function. In SAMIR
beamforming, we jointly optimize the cost over the signal of interest
and the extrinsic apodization weights. This beamformer results in
high-resolution ultrasound images, especially in the lateral direction.
The proposed methods are compared with the standard DAS and
a recently proposed statistically-modeled beamformer, iMAP, for a
different number of plane-wave insonifications.

Index Terms— ultrasound imaging, beamforming algorithm,
apodization function, non-convex penalty, sparsity amplification.

1. INTRODUCTION

In ultrasound B-mode imaging, typically, a transmission, of either
a focused or an unfocused acoustic beam (through a linear array
transducer), is followed by recording the received signals. In order
to generate the B-mode image, the received signals are time-aligned
using appropriate delays, specified by the array geometry and the
angle of transmission and reception. The delays attempt to isolate the
on-axis echoes originating from a particular point. In conventional
delay-and-sum (DAS) beamforming, the aligned signals are averaged
to obtain the beamformed image. Due to a finite aperture T , the
off-axis echoes are not entirely suppressed. As a result, the DAS
beam pattern is characterized by a main-lobe and several side lobes,
which correspond to the Fourier transform of a rectangular aperture.
To counter these effects, an apodization window, independent of
the received signals, is applied to reduce the main-lobe width and
suppress the side-lobes significantly.
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Fig. 1: [color online ] (a) Plot highlights the amplification of the
signal with SAMIR compared with IR beamforming algorithm. It
can be seen that both beamformers surpasses the conventional DAS,
and the recently proposed iMAP BF algorithm. Optimal apodiza-
tion function in (b) highlights weight of two elements with (c) their
corresponding aperture signals.

The inherent trade-off between the main-lobe width and the side-
lobe level, due to the uncertainty principle, limits the performance of
a beamformer. A sharper main-lobe corresponds to a finer resolution,
and lower side-lobe levels correspond to a higher contrast in the image
domain. A signal-dependent reweighting of the received signals is
considered in Capon’s Minimum Variance (MV) [1] beamformer such
that it maintains unity gain in the desired direction while minimizing
the energy received from the other directions. This method requires
estimation and inversion of a covariance matrix for every pixel in the
image. Due to its sensitivity to estimation errors, additional strategies
such as spatial smoothing and diagonal loading are incorporated to
improve robustness [2–5]. Lorenz and Boyd generalized Capon’s
method (MV) by accounting for the uncertainty in the array response
and/or the imprecise knowledge of the angle of arrival [6].

In literature, several signal-dependent reweighing techniques
such as Wiener beamforming [7], coherence factor (CF) [8], scaled
Wiener postfilter (ScW) [9] have been proposed to improve the im-
age contrast. The coherence factor assumes coherence of the signal
originating at the focal point over aperture elements in contrast to the
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interference [10–13]. The coherence factor is thus defined as the ratio
of coherent to incoherent sums across the detected signals. Despite
the advantages, the resultant images of coherence factor may suffer
from reduced image brightness, especially in low SNR conditions.
Nilsen and Holm [9] critically analyzed the coherence factor beam-
forming in the context of Wiener beamforming. The scaled Wiener
postfilter combines the contrast improvement of coherence factor and
robustness of Wiener filtering.

Recently, Chernyakova et al. [14] statistically modeled the signal
of interest and the additive interference components in the received
time-aligned signals. They considered the underlying desired signal
and interference components to be uncorrelated Gaussian random
variables. Their beamformer, iMAP, is shown to be superior in terms
of contrast-to-noise ratio than other state-of-the-art algorithms re-
ported in the literature.

In this paper, we model the signal of interest and additive inter-
ference components in the received time-aligned signals as random
variables. In particular, the signal of interest is assumed to follow a
Laplacian p.d.f. and the interference a normal p.d.f., which requires
us to solve a special instance of the LASSO [15] problem and has
a pointwise estimator with a free parameter. It is known in the liter-
ature that the `1 penalty in the LASSO formulation underestimates
large signal amplitudes [16]. We rectify the bias by reformulating
the LASSO problem with a non-convex penalty [17, 18], and provide
a pointwise estimator with two free parameters. We further extend
these formulations to optimize over the extrinsic apodization weights
given typical constraints on the apodization functions such as symme-
try, summing up to unity, and non-negative – this approach requires
an iterative solver. An illustration of optimal weights from SAMIR
technique is shown in Figure 1b.

Recently, a class of non-convex penalties has been proposed by
Selesnick that generalizes the `1 norm while maintaining the con-
vexity of the overall least-squares cost [16]. The proposed minimax-
concave (MC) penalty is the difference between an `1 norm and a
parameterized Huber function. It bridges the gap between the `1
norm and an `p norm (0 < p < 1). The advantage of MC penalty
over the `1 norm is that it provides a more accurate estimation of the
large amplitudes and promotes a higher level of sparsity.

2. SIGNAL MODEL

Consider a beamforming framework for an M -element linear ar-
ray transducer. We transmit either a plane wave or a focused beam
(depending on the imaging mode) into the medium, and record the
echoes received at all M elements. The received signal at the mth ele-
ment, ŷm(t), is then delayed by applying appropriate delays τm(t; θ)
(depending on the array geometry) focusing in the direction θ to
get aperture data ym(t; θ). The time-aligned signal ym(t) has an
underlying signal x(t), which is of interest to us. Considering that the
beamforming process is identical for every θ, we simplify the notation
by dropping θ in further discussion. Therefore, for a particular angle
θ, the aperture data can be decomposed as

ym(t) = x(t) + nm(t), (1)

where nm(t) is due to off-axis reflections, multi-path interference
and channel noise. In vector form, at time t, (1) can be expressed as

yt = xt 1M + nt, (2)

where 1M is an M -length column vector of all ones, and yt, nt ∈
RM . We also define x = [x1, · · · , xN ] ∈ RN and Y = [y1, · · · , yN ]T

∈ RN×M for N time samples.

The goal is to estimate xt from the aperture data yt for a time
t. We assume that entries in nt are Gaussian distributed, nt ∼
N (0, σ2

nI), where I is the M ×M identity matrix and σ2
n is the

noise variance.
If the signal of interest xt is deterministic, then the ML estimate

is given by

xML,t = arg max
x

p(yt;x),

=
1

M
1T
Myt =

M∑
m=1

wm ym,t, (3)

where wm = 1/M, ∀m ∈ [[1,M ]]. Thus, the Gaussian noise model
and deterministic signal of interest result in the classic delay-and-sum
(DAS) beamforming solution.

3. SPARSITY AMPLIFIED BEAMFORMING

We assume that the signal of interest is a random variable with a
Laplacian p.d.f. (uncorrelated with noise), that is, xt ∼ L(0, βs),
where βs is the signal scale. Consider the maximum a posteriori
(MAP) estimate of xt:

xMAP,t = arg max
x

p(yt|x)p(x),

= arg max
x

M∑
m=1

log p(ym,t|x)p(x),

= arg min
x

M∑
m=1

(ym,t − x)2

2σ2
n

+
|x|
βs
,

= arg min
x

M∑
m=1

1

2
(ym,t − x)2 + λ |x| , (4)

where λ = σ2
n/βs. We now impose an apodization function wm as

follows

xMAP,t = arg min
x

M∑
m=1

1

2
(ym,twm − x)2 + λ |x| . (5)

Here, we consider wm to be constant and summing up to unity for
all m ∈ [[1,M ]]. Rewriting (5) in vector form using matrix-vector
notations results in

xMAP = arg min
x

1

2
‖Yw− x‖22 + λ‖x‖1︸ ︷︷ ︸

J(x)

, (6)

which is a standard problem of LASSO [15]. We note here that the
`1-penalty is separable in x. The minimizer of J(x) is given by a
simple formula:

xMAP = STλ (Yw) , (7)

where STλ is the element-wise soft-thresholding operator [19] defined
as

STκ(z) = max (0, |z| − κ) sign(z).

Following the time separability in (5), we thus have a pointwise
MAP estimate xMAP for every time t. The problem of LASSO is
known to suffer from underestimation of large signal amplitudes
due to the `1 penalty (and its corresponding proximal operator) [16].
The underestimation of signal amplitudes is evident in Figure 4,
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comparing ST with DAS and iMAP estimates. Next, we reformulate
the LASSO problem to contain and address the underestimation issue.

Consider the following optimization problem consisting of a
quasiconvex minimax-concave penalty (MC), φµ(x):

xSAM = arg min
x

1

2
‖Yw− x‖22 + λφµ(x)︸ ︷︷ ︸

G(x)

, (8)

where

φµ(x) =

|x| −
x2

2µ
, |x| ≤ µ,

µ

2
, |x| ≥ µ.

(9)

Since the penalty φµ(x) is a separable in x, it can be applied element-
wise. Even though the penalty φµ(x) is non-convex in general, the
overall cost function G(x) is convex for µ > λ [16]. The minimizer
is given by

xSAM = Fλ,µ (Yw) , (10)

where Fλ,µ is the element-wise firm-thresholding operator:

Fλ,µ(z) =


0, |z| ≤ λ,
µ (|z| − λ)
µ− λ sign(z), λ ≤ |z| ≤ µ,

z, |z| ≥ µ.

(11)

The SAM estimate in (10) rectifies the underestimation of large
signal amplitudes as seen in Figure 4. Also, it is now comparable to
the DAS and iMAP2 solutions while attenuating the spurious ampli-
tudes (as seen in DAS and iMAP2). Moreover, this reformulation
provides pointwise estimates as the MAP estimate. However, it is
interesting to note that the signal of interest no longer follows a
particular distribution.

4. SPARSITY AMPLIFIED ITERATIVELY-REWEIGHTED
(SAMIR) BEAMFORMING

In the previous section, we chose the apodization weights to be
constant, normalized to unity. Typically, an apodization window is
symmetric, summing up to unity, and non-negative. Some exam-
ples include the rectangular window, Hamming window, and Hann
window. We now optimize over apodization weights, w, the ST-
associated cost function J(w).

To determine the optimal apodization weights w satisfying the
properties listed above, one must solve the following optimization
problem:

{xIR, w̃IR} = arg min
x,w̃

J(x, Sw̃), (12)

subject to 1T
Mw = 1,

w < 0,
w = Sw̃,

where S = [I, P]T ∈ {0, 1}M×(M/2) for imposing symmetry on w,
with I being the identity matrix, and P being the permutation matrix,
and < denotes componentwise inequality.

The constraints are incorporated using an augmented Lagrangian
LJ :

LJ(x,w, ξ) = J(x,w) + 〈 ξ ,1T
Mw− 1 〉+ ρ

2
‖1T

Mw− 1‖22,
(13)

Algorithm 1 Sparsity AMplified Iteratively-Reweighted (SAMIR)
Beamformer.
Require: Y - Aperture data

Initialize: λ, µ, ξ0, ρ, ε
x0 ← 0
w0 ← 1

M
1M

i← 0
repeat

Update xi:
xi+1 ← Fλ,µ (Ywi)
Update wi:

w̃i+1 ←
[(

YTY + ρ1M1T
M

)
S
]†
[Yxi+1 − (ξi − ρ)1M ]

w̃i+1 ← ReLU(w̃i+1)
wi+1 ← Sw̃i+1

Dual ascent:
ξi+1 ← ξi + ρ(1T

Mwi+1 − 1)
i← i+ 1

until convergence: ‖xi − xi−1‖2/‖xi−1‖2 < ε
xSAMIR ← xi
wSAMIR ← wi

where ξ is the Lagrange multiplier. The solution to (12) is found at the
saddle point of the augmented Lagrangian LJ(x,w, ξ), and is solved
using the alternating direction method of multipliers (ADMM) [20].

As seen before, the `1-penalty-based formulation suffers from
underestimation of large signal amplitudes, so will an estimate xIR

with optimal weights wIR in the previous section. We now optimize
over the apodization weights, w, the SAM-associated cost G(x) in
(8). In particular, we solve the following optimization problem:

{xSAMIR, w̃SAMIR} = arg min
x,w̃

G(x, Sw̃), (14)

subject to 1T
Mw = 1,

w < 0,
w = Sw̃.

The solution to (14) is found by solving the sub-optimization rou-
tines over the variables (x,w, ξ), for the augmented Lagrangian
LG(x,w, ξ), using an ADMM as described in Algorithm 1. We
use Rectified Linear Units (ReLU) to impose the non-negativity con-
straint. To solve (12), we replace Fλ,µ with the STλ operator.

5. SIMULATION RESULTS

In this work, we would like to highlight the amplitude enhancement
and the high-resolution capability of the SAMIR beamforming al-
gorithm. For demonstration, we use pre-beamformed data from the
PICMUS dataset [21]. The raw data is acquired using the Field-II ul-
trasound simulation software with a 128-element transducer of center
frequency 5.208 MHz, sampled at 20.832 MHz.

The raw data is acquired for different number of plane-wave (PW)
insonifications. To test the high-resolution capability of the SAMIR
beamforming (BF) algorithm, we use a point-reflector phantom from
the PICMUS dataset. In addition, we simulate the directivity pattern
of an array with lower side-lobes by applying a Hann window with an
f -number of 1.75 on reception. As a consequence, the contrast of an
image is improved at the expense of a wider main-lobe, thereby affect-
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Fig. 2: Simulation results for 1 plane-wave (1st row), 11 plane-wave
(2nd row), 75 plane-wave (3rd row) insonifications; The dynamic
range of all images is 60 dB.
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Fig. 3: [color online ] Point reflector comparison between SAM
(blue) and SAMIR (red) BF algorithm; The dynamic range of all
images is 60 dB.

ing its resolution in the image domain. In the case of a Hann window,
its main-lobe width is given by 8π/T , where T is the window size,
whereas the rectangular window has a width of 4π/T . In contrast,
the peak side-lobe level for Hann window is −31.5 dB, whereas for
a rectangular window, it is −13.3 dB.

In Figure 4, we first highlight the rectification of the underes-
timation of signal amplitudes using the proposed reformulation of
the LASSO problem in (8). The pointwise estimate xSAM restores
the signal strength compared with the ST estimate xMAP, and is com-
parable to DAS and iMAP2 estimates. Here, iMAP2 refers to two
iterations of the iMAP beamforming algorithm. Furthermore, the
SAM estimate prevents spurious magnitude regions as seen around
the axial location of 15 and 25 mm (of DAS and iMAP) in Figure 4.

We further present the optimal apodization function wSAMIR in
Figure 1b, highlighting two weights and their corresponding aperture
signals in Figure 1c. The optimal apodization functions wIR and
wSAMIR lead to high-resolution images as evident from the measured
lateral resolutions of IR and SAMIR BF algorithm in Table 1 as
compared to SAM and other beamforming techniques. The axial and
lateral resolutions are evaluated as an average over all point reflectors
within the image. The resolution in each direction is computed as the
full-width at half maximum (FWHM) of the point spread function
(PSF). The axial resolution of the proposed techniques (SAM and
SAMIR) is comparable to that of the others.

Table 1: A comparison of the measured axial and lateral resolution
(in mm) for various beamforming algorithms.

Method
1 plane wave 11 plane waves 75 plane waves

Axial res. Lat. res. Axial res. Lat. res. Axial res. Lat. res.
DAS 0.40 1.17 0.40 0.60 0.40 0.63

iMAP2 0.39 1.08 0.40 0.59 0.40 0.63

SAM 0.36 1.10 0.36 0.54 0.36 0.57

IR 0.37 0.59 0.38 0.47 0.40 0.59

SAMIR 0.37 0.45 0.38 0.40 0.40 0.58

CF 0.33 0.74 0.38 0.50 0.40 0.53
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Fig. 4: [color online ] Plot highlights the underestimation of signal
amplitudes with `1-based ST (Eq. (7)) and its rectification with MC
penalty-based SAM (Eq. (10)) beamforming algorithm.

The simulation results with different number of plane-wave in-
sonifications are shown in Figure 2. The point reflectors estimated
using IR and SAMIR BF algorithm have a similar resolution, except
for the underestimation of amplitudes in IR. The SAM BF recovers
the amplitudes but lacks the high-resolution capability of SAMIR BF
as highlighted in Figure 3.

In conclusion, the joint optimization (in IR and SAMIR beam-
forming) over the signal of interest and the extrinsic apodization
weights lead to high-resolution imaging, whereas the sparsity ampli-
fication assists SAMIR enhance the signal amplitudes as well. The
proposed beamforming algorithm, SAMIR, also compares favorably
to the classic DAS and the recently proposed iMAP beamformer in
Figure 1a.

6. CONCLUSION

In this paper, we considered a statistical beamformer with a Laplacian
distributed signal prior and an uncorrelated Gaussian interference.
The resulting formulation (LASSO) is known to suffer from amplitude
underestimation. To ameliorate the bias, we proposed a formulation
based on a non-convex minimax-concave penalty. We demonstrated
its efficacy in rectifying the amplitude bias, and suppression of the
spurious amplitudes resulting in highly-resolved point-reflectors of
the phantom. We further incorporated the properties of the apodiza-
tion function into a constrained optimization problem to get high-
resolution images. The joint optimization with respect to the signal
of interest and the apodization weights resulted in finely resolved
images, especially in the lateral direction. We integrated the high-
resolution formulation with the sparsity-enhancing minimax-concave
penalty resulting in the enhanced high-resolution ultrasound images.
The proposed beamformer, SAMIR, shows superior lateral resolution
and amplitude-enhanced image compared to the conventional DAS
and a recently proposed statistical beamformer called iMAP. The
parameters chosen were found to be robust in the experiments. A
further validation on other phantoms is required before considering
its use in real-world applications.
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