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ABSTRACT

The objective of the study is to develop a framework for au-
tomatic breast cancer detection with merging four imaging
modes. Attempts were made for tumor classification and
segmentation; using a multi-parametric Magnetic Resonance
Imaging (MRI) method on breast tumors. MRI data of the
breast were obtained from 67 subjects with a 1.5T-MRI scan-
ner. Four imaging modes: were T1 weighted, T2 weighted,
Diffusion Weighted and eTHRIVE sequences, and dynamic-
contrast-enhanced(DCE)-MRI parameters are acquired. The
proposed four-mode linkage backbone in tumor classifica-
tion, which overcomes the limitations of single-modality
image detection and simulates actual diagnosis processes by
clinicians, achieves the accuracy of 0.942. The proposed
automatic segmentation approach is performed by a refined
U-Net architecture, and the result improved segmentation
performance significantly. The combination of four-mode
linkage classification backbone and improved segmentation
network for breast cancer detection forms a computer-aided
detection (CAD) system that corresponds to the actual clinical
diagnosis work.

Index Terms— four-mode linkage, classification, convo-
lutional neural network, segmentation, MRI

1. INTRODUCTION

Breast cancer is medically known as a common cancer with
a high mortality rate, relative to other types of cancer. Early
detection and morphological analysis of tumors are critical
factors in the diagnosis and treatment of breast cancer, which
helps increase the survival rate to a certain extent. Techniques
for clinical imaging of the mammary glands include X-ray
mammography (mammography), color Doppler ultrasonogra-
phy, and Magnetic Resonance Imaging (MRI). MRI becomes
the most important method for the detection of breast cancer.
In this paper, automatic detection with classification and seg-
mentation of breast cancer is based on multi-parametric MR
images.

Despite recent advances in computer vision, breast cancer
diagnosis continues to rely heavily on visual inspections con-
ducted by experienced pathologists and radiologists [1]. The
detection performance may vary due to subjective observa-
tions by radiologists and clinicians. Through Computer Aided
Diagnosis (CAD) systems, examiners usually study images
from a single sequence imaging mode at a time. This is dif-
ferent from clinical practice in which a radiologist observes
several types parameters of several imaging modes of MRI
breast images simultaneously. We propose another detection
backbone based on four sets of images with different imaging
modes (T1W, T2W, DWI, and SYN). In the radiology report,
clinicians also need to accurately describe the location, shape,
and size of the tumor, which will become important founda-
tion for subsequent treatments with chemotherapy or surgical
resection. Extracting these features of tumors and finding le-
sion margins need accurate tumor segmentation. It is often
a challenging task due to poor signal-to-noise-ratio and faint
edges caused by partial volume effects [2]. Therefore, tumor
delineation is affected by variations and uncertainties in the
automated lesion segmentation process. These variations of
the intensity, texture, and morphology of the tumor lead to
inconsistency in diagnostic outcome. Thus, we proposed the
improved segmentation model.

2. EXPERIMENTAL METHODOLOGY

In this paper, a new detection backbone with tumor classifica-
tion and segmentation tasks is proposed. The block diagram
of the detection system is shown in Fig. 1. We put forward
the four-mode linkage backbone based on the use of Convo-
lutional Neural Networks (CNNs) to simulate the clinical di-
agnosis, and then explore the segmentation. The upsampling
process in the segmentation network is refined for obtaining
clear edges of tumors. Meanwhile, using classified network
to initialize the segmentation work can better integrate these
two related tasks in detection of breast cancer. Once the le-
sion area is detected and correctly classified, it is automati-
cally segmented and formed into a complete set of diagnosis
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system to facilitate the clinician’s further diagnosis of the pa-
tient’s breast tumor.

Fig. 1. The breast cancer detection system based on four-
mode linkage classification backbone and improved segmen-
tation network system.

The dataset used in our experiment is an MRI database
built at the radiology department of the Tianjin Center Ob-
stetrics and Gynecology Hospital. A total of 67 MRI breast
examinations from high-risk patients are included, containing
8,132 images. After a selection process, 6000 images were
used for classification, and 1800 images are used for segmen-
tation. The data is divided into training set, verification set
and testing set by 8:1:1. All sequences are perfectly aligned,
it is because of the imaging protocol. The screening protocol
used is as follows. Bilateral MRI is performed simultane-
ously using a 1.5T scanner (PHILIPS MR Systems Achieva,
version 3.2). On account of the T2W SPARI, T1W TSE,
DWI SSh, and DYN eTHRIVE+C images are linked for ob-
serving the tumor in clinical diagnosis, these four sequence
imaging modes are mainly to be considered in this experi-
ment.

2.1. Classification in breast cancer detection

In order to verify that the proposed four-mode linkage clas-
sification backbone is effective, three comparative analyses
were performed using four major convolutional neural net-
works. The major techniques that successfully employ CNNs
to medical image classification and applied in our classifica-
tion task are training the ”CNN from scratch” [3, 4, 5, 6] and
transfer learning [7]. Also, multiple patches are selected in
the image. The method here uses random-size cropping [8].
In addition to the random crops, only random horizontal flip-
ping is adopted as a standard data augmentation scheme. Be-
cause the left and right breasts are almost symmetric, this data
augmentation method can better increase the number of valid
samples.

In the proposed backbone, the images of the four se-
quences are passed through the convolutional neural network
in order. Then, four types of feature maps are acquired as
the output of the CNN models. As shown in Fig. 2, each
type of image after passing through the CNN can output a
feature map. The dimension of all the four feature maps
got from CNN are the same, depending on the numbers of
convolutional layers in CNNs. The thickness is denoted by
t here. Next, we concatenate the features F1, F2, F3, and
F4 extracted from each feature map, and convert them into a
higher-dimensional feature. The algorithm of the feature fu-
sion before concatenation can be explained in detail as shown
in Algorithm 1.

Algorithm 1 Procedure of the feature fusion algorithm.

Input: N features extracted from the CNN, {fn}Nn=1.
1: hyper param: number of relations Nr
2: hyper param dk : key feature dimension
3: learnt weights:

{
W r
K ,W

r
Q,W

r
V

}Nr
r=1

4: for every (n, r) do
5: compute {ωmn,rA }Nm=1 using Eq. 3
6: compute {ωmn,r}Nm=1 using Eq. 2
7: compute fnewNrn using Eq. 1
8: end for

Output: The fused new feature
{
f

′

n

}N
n=1

using Eq. 4

After four images pass through the CNN, the features are
f1, f2, f3, and f4. Then, in order to merge the features of
each image into the features of the other three images, for the
n-th feature fn, we calculate the new feature as

fnewn =

4∑
m=1

ωmn × (WV × fm) (1)

Where fm is the feature of them-th image, WV indicates that
the feature is linearly transformed to a low dimension, and
ωmn represents the weight of the linear sum, the weight can
be calculated as

ωmn =
exp (ωmnA )∑
k exp

(
ωknA

) (2)

ωmnA =
dot (WKfm,WQfm)√

dk
(3)

WK ,WQ are matrices and play the same roles asWV , they all
represent linearly transform the features.Appearance weight
ωmnA is computed as dot product. dk is the dimension of
the feature after being transformed. After doing the calcula-
tion, for the n-th feature fn, there are Nr features like fnew1

n ,
fnew2
n , ...fnewNrn . Then, the feature of the n-th image can be

transformed as

f
′

n = fn + Concat
[
fnew1
n , fnew2

n , ...f
newNr
n

]
(4)
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Four new features f
′

1, f
′

2, f
′

3, and f
′

4 are obtained after the
transformation, we can simply concatenate them [9]. Gener-
ally, we set Nr = 8, if the dimension of the initial feature f1,
f2, f3, and f4 is 1024, the dimension of the feature fnew1

n ,
fnew2
n , ...fnewNrn can be 1024 ÷ 8 = 128.Finally, the 4t di-

mension feature that can be expressed as F=[F1, F2, F3, F4]
is put into the softmax process for the classification work.

Fig. 2. A group images put into a convolutional neural net-
work.

In the softmax regression, we solve the multi-classification
problem (as opposed to the binary problem solved by lo-
gistic regression). The y class labels can take k differ-
ent values (instead of two values). Therefore, with the
training sets

{(
x1, y1

)
,
(
x2, y2

)
, ..., (xm, ym)

}
, there is

yi ∈ {1, 2, ..., k}. For example, there are k different cate-
gories in a classification task. For the given test input x, we
want to use the hypothesis function to estimate the proba-
bility value p (y = j | x) for each category j. That is, we
want to estimate the probability of the occurrence of each
classification result of x. Therefore, our hypothesis func-
tion will output a vector of k dimensions (the sum of the
vector elements is 1) to represent k estimated probability
values. Specifically, our hypothetical function hθ (x) has the
following form:

hθ

(
x(i)
)
=


p
(
y(i) = 1|x(i); θ

)
p
(
y(i) = 2|x(i); θ

)
...

p
(
y(i) = k|x(i); θ

)
 =

1∑k
j=1 e

θTj x
(i)


θT1 x

(i)

θT2 x
(i)

...
θTk x

(i)


(5)

Where θ1, θ2, ..., θk ∈ Rn+1 is the model parameter. Note
that item 1∑k

j=1 e
θT
j
x(i)

normalizes the probability distribution

so that the sum of all the probabilities is 1.
In the training, four types of convolutional neural net-

works, Vgg 16 [10], ResNet-50 [11], Inception V3 [12] and
DenseNet [13], are selected as different network architectures
for the verification procedure. These network architectures
have achieved excellent results on ImageNet, and have shown
to be effective for extracting image features.

All the networks are trained using the stochastic gradient
descent (SGD) method. We train using the batch size of 16
for 40 epochs, respectively. The learning rate is set to 0.01
initially, and is lowered by 10 times at the epoch 20 and 30.
In addition to this, a weight decay of 1e-5 and a Nesterov

momentum [14] of 0.9 without dampening are used. The loss
function used in the training part is defined as

L = − 1

m

m∑
i=1

n∑
j=1

I
{
y(i) = j

}
lnp

(i)
j (6)

where m is the number of samples, n for the number of clas-
sifications, I represents the indicator function, y(i) = j here
represents the ground truth for the i-th sample belongs to the
j-th class, and p(i)j is the probability that the i-th sample be-
longs to the j-th class.

2.2. Segmentation

In the segmentation part, for obtaining the most accurate seg-
mentation results, the upsampling process in the traditional
U-Net[15] architecture is refined, and the U-Net is initialized
using the classified network. For preprocessing, the data are
normalized using the means and standard deviations of the
dataset. The data augmentation scheme (random horizontal
flipping) is adopted for the datasets in classification tasks.
Also, the data balancing strategy is employed as described
in [13] for mini-batch sampling.

The refined upsampling process specifically use the sub-
pixel method. The sub-pixel convolution is a standard con-
volution followed by additional rearrangement of feature val-
ues, termed the phase shift [14]. The process of upsampling
is to put the feature map into a layer convolution in which the
length and width are in 1×1, and the number of channels is
4C. The feature map becomes H×W×4C. Then, it is reshaped
into 2H×2W×C. As shown in Fig. 3, such upsampling can
achieve better image resolution through learning parameters.

Fig. 3. The refined upsampling process.

The network is trained using the stochastic gradient de-
scent (SGD) method. In the training, the batch size 8 for 60
epochs and the classified network to initialize the downsam-
pling part of U-Net are used to increase the accuracy of the
segmentation. The initial learning rate is set to 0.001, and
is divided by 10 at 50% and 75% of the total number of the
training epochs. The remaining settings are the same as those
for classifications. The weight decay of 1e-5 and the Nes-
terov momentum of 0.9 without dampening are used. The
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loss function used in the segmentation training part is defined
as

L = − 1

m

m∑
i=1

h∑
j=1

w∑
k=1

n∑
q=1

I
{
y
(i)
jk = q

}
lnp

(i)
jkq (7)

where m is the number of samples, n for the number of clas-
sifications, I represents the indicator function, y(i)jk = q repre-
sents the pixel of the j-th row and the k-th column in the i-th
sample belongs to the q-th class, p(i)jkq is the probability that in
the i-th sample, the pixel of the j-th row and the k-th column
belongs to the q-th class, h represents the hight of the image,
and w represents the width of the image.

3. RESULTS

Table 1and 2 reveals that the comparisons across the per-
formance obviously favors the four-mode linkage backbone.
All the accuracy data show that the backbone of the four-
mode linkage proposed in this study outperforms the existing
method of the single-modality image diagnosis in all the four
convolutional neural networks. Our best results on DenseNet
are more encouraging: the four-mode linkage backbone
reaches the accuracy of 94.2%. At the same time, the ac-
curacy data can strongly demonstrate applying the transfer
learning strategy, and use the transfer learning strategy and
data augmentation simultaneously, the results have a certain
degree of improvement. Anyway, the four-mode linkage
backbone apparently perform better than the single-modality
image backbone. Facts have proved that our new backbone is
effective in tumor classification.

Table 1. The accuracy data in single-modality image methods
in all four convolutional neural networks in classification.

CNN Single Single+trans Single+
trans+aug

Vgg 16 0.876 0.890 0.905
ResNet-50 0.890 0.891 0.907

Inception V3 0.894 0.896 0.909
DenseNet 0.906 0.907 0.911

1 CNN: Convolutional Neural Network
2 Single: the single-modality image backbone
3 Single+trans: the backbone with transfer learning
4 Single+trans+aug: the backbone with transfer learning and data

augmentation

Whether using the classified network to initialize the seg-
mentation network, and whether using the refine upsampling
process in the segmentation task based on U-Net architec-
ture are mainly compared. The results of the comparison are
shown in Table 3. It can be seen that combining classified
network initialization and the refined upsampling process, the
segmentation can be more accurate. The best dice coefficient
value reaches 0.865.

Table 2. The accuracy data in four-mode linkage methods in
all four convolutional neural networks in classification.

CNN Linkage Linkage+trans Linkage+
trans+aug

Vgg 16 0.902 0.915 0.931
ResNet-50 0.924 0.926 0.936

Inception V3 0.927 0.928 0.937
DenseNet 0.931 0.937 0.942

1 CNN: Convolutional Neural Network
2 Linkage: the four-mode linkage backbone
3 Linkage+trans: the backbone with transfer learning
4 Linkage+trans+aug: the backbone with transfer learning and data

augmentation

Table 3. The dice coefficient values of tumor segmentation in
traditional U-Net and improved U-Nets.

Method U-Net U-Net+init U-Net+init+rf

Vgg 16 0.832 0.847 0.860
ResNet-50 0.829 0.833 0.847

Inception V3 0.815 0.821 0.839
DenseNet 0.836 0.849 0.865

1 U-Net+init: U-Net with the initialization of the classified network
2 U-Net+init+rf: U-Net with the initialization of the classified net-

work and refining of upsampling process

4. CONCLUSION

In this paper, a novel breast cancer detection framework based
on merging four modes of MR images is developed to en-
hance the diagnosis process by clinicians. We propose a four-
mode linkage backbone for the classification task in tumor
detection. This backbone considers different imaging modal-
ities for detecting tumors in multiple signal-weighted imaging
sequences through combining MRI-based features and image
information to detect breast tumors. In addition, we use an op-
timized U-Net architecture to segment the filtered tumors. We
refine the upsampling process and initialize the segmentation
backbone by the classified network. The proposed four-mode
linkage backbone in classification and the improved segmen-
tation procedure can be integrated to form a breast cancer de-
tection framework. This framework can be extended to clini-
cal medicine and has important implications for the diagnosis
of breast tumors.
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