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ABSTRACT

The scarcity of professional doctors stimulates the progress of
breast cancer classification. However, there are still numerous
challenges such as varied appearances (color, texture etc.) of
microscopy images and the ambiguous category boundaries.
In this paper, we propose an efficient and effective method
to achieve multi-classification for H&E stained breast cancer
images. Firstly, to restrain color noises in the staining stage,
data augmentation in HSV color space is used to increase the
diversity of color distribution. In addition, inspired by the
principle of gravitation, a Gravitation Loss (G-loss) is pro-
posed to maximize inter-class difference and minimize intra-
class variance. The experimental results on public BACH
2018 dataset indicate that the proposed algorithm achieves
the state-of-the-art performance, which demonstrates its ef-
fectiveness.

Index Terms— Multi-classification, Breast Cancer, His-
tology Images, Gravitation Loss, Deep Learning

1. INTRODUCTION

Until 12 September 2018, the number of breast cancer di-
agnoses has reached approximately 2.1 million, which con-
tributes 11.6% of the total cancer incidence [1]. Despite the
rapid development of medical technology, breast cancer di-
agnosis is still a difficult and exhausting task. The insuffi-
ciency of professional doctors and the complexity of patholo-
gy images has intensified this status, especially in developing
and under-developing countries. Therefore, a computer-aided
cancer diagnosis has a potential application value.

Numerous methods [2][3][4][5] were proposed to deal
with breast cancer classification, and Hematoxylin and Eosin
(H&E) stained histology images were commonly used. For
example, both Camelyon16 challenge [6] and ICIAR 2018
Grand Challenge on BreAst Cancer Histology Images (BACH
2018) [7] adopted H&E stained images. However, due to the
differences in lab protocols, concentration, source manufac-
turer, scanners, and even staining time, the results of H&E
stained images are also various [8]. Fig.1 shows four cate-
gories from BACH 2018, in which different color distribu-
tions are obvious. Color uncertainty increases the difficulty

(a) (b) (c) (d)
Fig. 1: Microscopy images from BACH 2018 are of four
classes: (a) normal, (b) benign, (c) in situ carcinoma and (d)
invasive carcinoma.

of automatic diagnosis. To alleviate the impacts of color vari-
ability, instead of forcing all images to be similar, we aug-
ment the training data by a color jitter operation in HSV color
space.

Images in BACH 2018 are labelled as four classes, i.e.,
normal, benign, in situ carcinoma and invasive carcinoma.
However, due to the subjective difference and the pathology
complexity, different categories usually have ambiguous cat-
egory margins. In order to optimize the margins of inter-class
and intra-class, we propose a Gravitation Loss based on the
principle of gravitation. Take the galaxy as an example, mu-
tual gravitation of planets to the Earth in our solar system is
much stronger than that of arbitrary planets outside solar sys-
tem. In analogy with the gravity, we abstract the similarities
between images as two kinds of forces: inter-class gravity and
intra-class one. Then similar intra-class features and discrim-
inative inter-class features can be learned by Gravitation Loss
and the classification performance will be improved.

Extensive experiments on BACH 2018 dataset demon-
strate the effectiveness of this method. The contributions can
be summarized into three aspects:
(1) A data augmentation method in HSV color space is pro-
posed to improve the color generalization ability in the multi-
classification model,
(2) A novel Gravitation Loss is proposed to regulate loss func-
tion so as to optimize the inter-class and intra-class margins,
(3) Experiments on BACH 2018 dataset show that our method
achieves the state-of-the-art results.

2. RELATED WORK

Many experiments were conducted on Camelyon 16 dataset,
while only binary classification results were recognized. In
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Fig. 2: The whole architecture.

order to meet the clinical requirement, great efforts of multi-
classification have been made recently. For instance, based
on BACH 2018 dataset, numerous approaches were proposed
to classify H&E breast cancer images into four categories
[2][3][4][5][9][10].

To obtain more training data and reduce the number of
network parameters, most of the previous methods explored
patch-based algorithms [2][3][5][10]. However, each mi-
croscopy image in the size of 2048 × 1536 has only one sin-
gle label, which means that all patches from the same image
would be labelled as the same label regardless of whether the
patches include the corresponding information. This rough
processing will introduce many wrong tags, which will cer-
tainly reduce the classification quality. To solve this problem,
Xie [11] removed some mislabelled patches via training an in-
dependent CNN model first and then training another one for
classification. However, it was a time-consuming operation
and did not provide superior results. Different from previous
approaches, we firstly downsample input images by a 0.25 s-
cale factor to reduce parameters, and then apply random crop-
ping to enhance data diversity, which is efficient and effective.

To deal with the uncertainty of staining, two common
methods were applied: (1) normalize the color of all images
and make them look similar, (2) increase the model’s gen-
eralization ability by enhancing color variation. For the for-
mer, the methods usually chose a source image first and then
tuned the color of other images [2] [3]. Although all the im-
ages would be somewhat alike to the source one, the methods
largely relied on the choice of the source image. For the latter,
Shaban [12] generated many different color images via GAN
[13], which was complicated and inconvenient. To simpli-
fy the operation, we practice color jitter in HSV color space,
which shows a high performance.

Although many loss functions have been proposed for nat-
ural image processing [14], it is scarce in medical images.
Milletari [15] proposed a Dice Loss, while it was only ef-
fective in medical image segmentation. For medical image
classification, few loss functions were applied. Moreover,
the differences of natural image categories are obvious but
ambiguous for breast cancer ones. Different from previous
works only focusing on complex normalization and large net-
works, a succinct Gravitation Loss is proposed in this paper
to maximum the inter-class margins and minimize the intra-
class variances.

3. METHODOLOGY

The framework of our method is shown in Fig.2. As men-
tioned before, the stained images may present in various col-

Fig. 3: Several in situ carcinoma H&E stained samples with
different color distributions from BACH 2018.

(a) H-channel (b) S-channel (c) V-channel
Fig. 4: The mean distribution of each channel of training sam-
ples from BACH 2018.

ors. To overcome the impact of color differences in classifi-
cation, data augmentation on HSV color space is first applied
and we will introduce it in Section 3.1. Additionally, to solve
the problem that the boundaries of different categories are am-
biguous, a Gravitation Loss is proposed to enlarge the margin-
s between classes as well as decrease the variance within the
class. It will be described in Section 3.2.

3.1. HSV Augmentation

The color of H&E stained images is influenced by many fac-
tors. Take the microscopy images from BACH 2018 as ex-
amples, Fig.3 shows several in situ carcinom images with dif-
ferent color distributions. Since different images in the same
class may present various colors, the impact of image color
on classification should be limited to some extent. Therefore,
the color of the stained sections should be more variegated.
Specifically, according to human visual perception for color
changes, we apply a data augmentation scheme on uniform
HSV color space to emphasize morphological changes. To
further prove the difference in color of the stained images,
the mean of each channel of every image is calculated in the
training set and Fig.4 shows the distributions. According to
the distribution of each channel of HSV, a Gaussian color jit-
ter is combined in each channel of the input images. Let x be
the original pixel, then the new pixel value x′ is defined as

x′ = clip(x+ f(G)) (1)

where f(G) denotes Gaussian noise. For H-channel, the
values are clipped to [0, 180] and [0, 255] for S- and V-
channel. As shown in Fig.5, HSV augmentation increases
color changes .

3.2. Gravitation Loss

The boundaries of different categories of breast cancer im-
ages are blurry. For example, the images from different class-
es (shown in Fig.1) are similar to each other. To distinguish
images of different classes more clearly, a Gravitation Loss
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Fig. 5: Examples of color jitter.

Fig. 6: F denotes gravitation force between class 0 and other
classes, where Ci is the center of class i, Mi is the mass of
class i (i ∈ {0, 1, 2, 3}) and Q0 is the center of mass of class
1, 2 and 3.

(G-loss) is proposed to increase the inter-class margins while
decreasing the intra-class ones.

As Newton’s law of universal gravitation described, every
point mass attracts every single other point mass by a force
acting along the line intersecting both points [16]:

F =
Gm1m2

r2
(2)

where F is the gravitation force, G is the gravitational con-
stant, m1 and m2 are the masses of the objects and r is the
distance between them. Similarly, there is gravitation force
between two different classes. Assuming that the mass of
each sample is 1, the mass of one class can be denoted as the
number of samples in this class. As shown in Fig.6, F denotes
gravitation force between class 0 and other classes,Mi andCi

are respectively mass and the center of class i, Q0 denotes the
center of mass of class 1, 2 and 3. Since the gravitation force
between different classes is considered the smaller the better,
it can be designed as a part of the loss function, i.e., G-loss.
Specially, we call this kind of inter-class loss LG−inter:

LG−inter ∝ F (3)

Similarly, for a batch during training, the loss for class 0 can
be presented as:

L
(0)
G−inter ∝ G ·

M0 (M1 +M2 +M3)

‖C0Q0‖2
(4)

F for other classes is similar to class 0. To be specific, the
constant G is ignored and the whole G-loss of different class-
es is designed as:

LG−inter =
1

4

3∑
k=0

Lk
G−inter (5)

LG−inter =
1

4

3∑
k=0

Mk (n−Mk)

‖CkQk‖2
(6)

where n denotes the batch-size.
Like inter-class loss, the intra-class loss can also be de-

fined according to gravitation force. Since the force between
samples of the same class is considered the larger the better,
the loss will be inversely proportional to the gravitation force:

LG−intra ∝
1

F
(7)

Since the mass of each sample Sk is 1, the whole intra-class
loss is given as:

LG−intra =
1

n

n−1∑
k=0

‖SkCk‖2 (8)

where ‖SkCk‖2 denotes the distance between sample Sk and
its class center Ck.

Afterwards, the G-loss is composed of two parts, i.e.,
inter-class loss and intra-class loss:

LG = LG−inter + LG−intra (9)

Finally, combining with the traditional cross entropy loss Lc

[17], the network is trained with a new loss:

L = Lc + βLG (10)

where β is a hyper-parameter to control the impact of G-loss.

4. EXPERIMENTS

4.1. Dataset and Settings

The proposed algorithm was evaluated on the H&E stained
microscopy images of BACH 2018, i.e., the task of Part A.
There are 400 images for training and 100 images for test.
Specifically, the images from training set are labelled as nor-
mal, benign, in situ carcinoma or invasive carcinoma and each
class consists of 100 images with the size of 2048×1536 pix-
els. In our experiments, the training set was divided by a ratio
of 8:2 for training and validation. Note that the labels of the
test images are invisible and the test part needs to be done
online. Accuracy is considered as the evaluation metric:

Accuracy =

∑99
i=0 xi
100

,

{
xi = 1 (if yi = ti)
xi = 0 (if yi 6= ti)

(11)

where yi denotes the predicted label while ti denotes the
ground truth.

In clinical practice, doctors usually use whole-slide im-
ages (WSI) for diagnosis. However, the size of the WSI
can be as large as 100, 000 × 100, 000 pixels and the mi-
croscopy images are parts of WSI, which means it will be
time-consuming if our network is too complicated. In addi-
tion, the training data are too few and the complex networks
have a risk of overfitting. Therefore, we chose light ResNet18
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Fig. 7: Accuracy of validation set during training with differ-
ent β for G-loss.

Table 1: Results of online test

ResNet HSV G-inter G-intra Accuracy
√

83.7± 0.6√ √
85.0± 1.0√ √
84.3± 1.2√ √
84.3± 1.2√ √ √
86.0± 1.0√ √ √
86.3± 0.6√ √ √
87.0± 0.0√ √ √ √
89.3± 1.5

[18] as the skeleton network for fast classification. The train-
ing images are first resized to 512 × 384, then randomly
cropped to 384 × 384, and finally re-resized to 224 × 224
as the inputs of the network. The basic data augmentation in-
cludes flipping and rotating. The learning rate is initialized
to 0.001 and will be decreased by a factor of 0.5 after every
20 epochs. The batch size is set as 128. All experiments are
conducted based on Pytorch toolbox [19].

The hyper-parameter β for Eq.10 controls the impact of
G-loss. Fig.7 shows the accuracy trends on the validation set
during training with different β. All experiments implemen-
t HSV augmentation. Our network achieves a better result
when β = 0.1.

4.2. Results on Test Set

Table 1 shows online test results and the accuracy (%) is the e-
valuation metric described in Section 4.1. Due to the random-
ness of rotation, cropping and scaling during training, each set
of experiments is performed three times and the models of e-
poch 150 are saved for testing. The table presents the mean
and standard deviation of every three experiments. In addi-
tion to the experiments with or without HSV augmentation
(described in Section 3.1), we also conduct experiments on
G-loss. The third column of Table 1, i.e., ”G-inter” denotes
whether G-loss is combined with the inter-class gravitation
loss. Similarly, ”G-intra” denotes whether G-loss is combined
with the intra-class gravitation loss. The hyper-parameter β of

Table 2: Comparision with other mothods

Rank Team Accuracy

1 Bamboo (Ours) 0.91
2 Sai Saketh Chennamsetty [20] 0.87
2 Scotty Kwow [21] 0.87
4 Nadia Brancati [22] 0.86
5 Matthias Kohl [4] 0.83
6 Hongliu Cao [9] 0.79
7 Gleb Makarchuk [23] 0.76
8 Alexander Rakhlin [24] 0.74
9 Xinpeng Xie [11] 0.72

10 Sulaiman Vesal [3] 0.66
11 Aditya Gokatkar [5] 0.61
11 Kamyar Nazeri [10] 0.61
13 Yeeleng S. Vang [2] 0.47

Eq.10 is set to 0.1. We can observe that by introducing HSV
augmentation and G-loss, the experimental performances are
significantly improved.

Table 2 shows the comparison online. All methods are
based on the test set of BACH 2018. To be specific, Sai [20]
and Scotty [21] shared the champion of the challenge before
the deadline. All results submitted before deadline can be
obtained 1. Note that the challenge is re-open for submission
and all test results are listed at the website 2. The leaderboard
shows the best performance of every team and our method
achieved a very competitive rank.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose a simple but effective classifica-
tion algorithm for H&E stained breast cancer histology mi-
croscopy images. Firstly, to cope with the color variation of
stained images, a color augmentation method in HSV color
space is applied to increase the color generalization. Then a
gravitation loss is proposed to optimize the margins of inter-
and intra-class. Compared with the state-of-the-art method-
s, the proposed algorithm achieves a very promising perfor-
mance on online BACH 2018 evaluation. Considering that
the microscopy images are patches of the whole slide images,
in the future work, we will explore a more reasonable solution
on the whole slide images.
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