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ABSTRACT

Accurate and fast segmentation of nuclei in histopathological
images plays a crucial role in cancer research for detec-
tion and grading, as well as personal treatment. Despite the
important efforts, current algorithms are still suboptimal in
terms of speed, adaptivity and generalizability. Popular Deep
Convolutional Neural Networks (DCNNs) have recently been
utilized for nuclei segmentation, outperforming traditional
approaches that exploit color and texture features in combi-
nation with shallow classifiers or segmentation algorithms.
However, DCNNs need large annotated datasets that require
extensive amount of time and expert knowledge. In addi-
tion, segmentation results obtained by either traditional or
DCNN approaches often require a post-processing step to
separate cluttered nuclei. In this paper, we propose a com-
putationally efficient nuclei segmentation framework based
on DCNNs exhibiting an encoding-decoding structure. We
use a partially-annotated dataset and develop an effective
training solution. We also use a weighted background model
for network to give more importance to borders of nuclei
to overcome the problem of clutters. The abolition of any
pre-processing or post-processing step without any compro-
mise on the performance leads to a fast and parameter-free
system, which presents important advantages with respect to
state-of-the-art.

Index Terms— Nuclei segmentation, digital pathology,
histopathology, convolutional neural networks

1. INTRODUCTION

Detection and segmentation of nuclei in widely used histopa-
thology images is a key step for cancer diagnosis, grading
and prognosis. As it provides more information about nu-
clei features, such as size, texture and shape, segmentation,
in particular, can be regarded as a key yet challenging task in
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pathology images, which is either achieved manually [1] or
automatically [2]. One main reason in this challenge is the
variation of nuclear size and shape depending on the tissue
type, the existence and even the severity of a disease. An-
other difficulty relates to the variations in staining and scan-
ning procedures. Although many normalization techniques
have been proposed for the latter [3], an efficient and robust
segmentation algorithm that can generalize well over different
tissues and staining techniques is still of utmost importance
for digital pathology.

The early work in this field addressed the problem of nu-
clei segmentation with traditional approaches, where the al-
gorithms rely on color, texture or shape based features fol-
lowed by shallow classifiers or segmentation algorithms such
as graph-cut or watershed [4, 5, 6, 2]. On the other hand,
favorable results of deep learning algorithms in computer vi-
sion tasks have led to a new class of approaches in biomed-
ical image processing. One well-known example is the U-
Net architecture [7] that has been successful in segmenta-
tion of electron microscopy images. An early adaptation of
DCNNs to nuclei segmentation is proposed in [8], following
a strategy to classify every pixel individually using a small
patch around it. That work also introduced the first labeled
dataset with partially annotated nuclei. Many other works
address this problem in a similar fashion, which results in
computationally-expensive sliding-window approach in infer-
ence time [8, 9, 10, 11, 12]. The work of [12] formulates
the problem as a 3-way classification rather than two, third
class being the nuclei boundary, which ameliorates the per-
formance in case of cluttered nuclei. Another group of works
within the deep learning umbrella employs architectures that
make use of so-called deconvolution layers on top of the rep-
resentations obtained with convolution layers, in order to ob-
tain a high resolution output serving as initial segmentation
map [13, 14]. Presenting a comparative study, the concurrent
work of [14] found U-Net to be the most convenient archi-
tecture for segmentation. Nonetheless, regardless of the ar-
chitecture utilized, all of the aforementioned works employ a
sophisticated and computationally expensive post-processing
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step to split cluttered or overlapping nuclei, which have been
an established problem due to its challenging nature.

In this paper, we propose a framework that aims at solving
the above limitations by providing means to effectively detect
nuclei in adverse settings. In particular, we present a new al-
gorithm that attains background modelling with the help of
unsupervised algorithms and gives higher importance to pix-
els at nuclei borders to effectively handle clutters. We believe
that the proposed training scheme that exploits unsupervised
clustering techniques can be employed in many different ap-
plications in biomedical imaging with regard to unavailabil-
ity of fully annotated datasets. Furthermore, the encoding-
decoding structure for segmentation leads to competent infer-
ence time, which is essential in large scale processing as the
nuclei segmentation mostly serves as a fundamental step for
further examination. Our comparative experimental results
indeed confirm that the proposed framework exploit the lim-
ited labels very well without a compromise in inference time
or performance.

2. METHOD

Known with their preferable performance, DCNNs require la-
beled data for problems like classification, detection and seg-
mentation. On the contrary, manual annotation of data for
segmentation is an exhausting task and need expert knowl-
edge, especially for biomedical data [1]. Partial annotations
can be considered as an opportunity to make DCNNs more
widely applicable to problems in medical images provided
that efficient algorithms to make use of partial annotations ex-
ist. Although it is more straightforward to use partial annota-
tions for patch-classification based algorithms, the ambiguity
in nonanotated pixels, either being foreground or background
in a two-class segmentation problem, makes the problem in-
herently challenging. Our method exploits the unsupervised
clustering algorithms to provide a solution to this problem and
uses the dataset introduced in [8] as a showcase. In this sec-
tion, after providing the architecture details, we explain our
background modelling and present the new loss function.

2.1. Deep Network Architecture

In this work, we employ a modified version of U-Net architec-
ture [7], which is composed of five encoding and five decod-
ing layers. We replace valid convolutions with zero-padded
counterparts to provide more flexibility in terms of input im-
age size. In addition, a batch normalization layer is added af-
ter each non-linearity operation to account for the variations
in color distributions of images as a result of different stain-
ing and scanning procedures. Employing batch normalization
allows us to eliminate the need for pre-processing steps, such
as histogram normalization or matching. The empirical eval-
uation of different architectures has led to the current design
of the architecture, which is illustrated in Figure 1.
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Fig. 1: The proposed architecture where each grey box repre-
sents a multi-channel feature map, the number written at the
bottom of each box indicating the channel number. The light
grey boxes represent the copied feature maps from the corre-
sponding encoding branch.

2.2. Background Modelling

The dataset in use is partially annotated, which translates
to the fact that only some of the nuclei are labeled for the
groundtruth mask. Such labeling does not serve well for
segmentation architectures as the pixels with label ’0’ do not
always represent background. However, as a first step, the
very close neighborhood of annotated nuclei can be regarded
as background. In addition, the prior knowledge of a dataset,
such as the fact that most of the cytoplasm is known to be
eosinophilic in histopathology images, can improve the mod-
elling. Hence, we perform a color deconvolution to obtain
hematoxylin and eosin channels. The background model is
then reinforced by applying k-means algorithm to the decon-
volved image with k=2, where the cluster with larger area is
supposed to be background with less certainty.

2.3. Loss Function

The widely-used cross-entropy loss penalizes the output of
a model as it diverges from the true label; however, the am-
biguity in true background label in partial annotation case
provoked the modification of the cross-entropy loss. Let
yij ∈ 0, 1 represent the groundtruth value of a pixel at loca-
tion (i, j), where 1 symbolizes the nuclei and 0 indicates non-
annotated nuclei or non-nuclei regions. Let ŷfg

ij , ŷ
bg
ij ∈ [0, 1]

represent the output of the network layer for foreground and
background masks, respectively. In order to compensate for
nuclei that are not annotated, we present a new masking
term mij ∈ [0, 1] as given in Eq.(1), where W,H indicate
the height and width of an image. As the term (1 − yij)
corresponds to groundtruth pixels with value 0, mij can be
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interpreted as weighting term to model background. Not only
does it let us avoid pixels with high uncertainty for training
by equating its value to zero, but it also enables us to give
more importance to some specific pixels, such as the close
neighborhood of annotated nuclei.

L =
∑

(i,j)∈WxH

yij log ŷ
fg
ij +mij(1− yij) log ŷbg

ij (1)

To obtain mij , we first take the distance transform of the
groundtruth mask, dij , using Euclidean distance. We then
apply a soft thresholding mechanism, as given by Eq.(3).

dij = min
(i,j),(u,v)∈WxH
{(i,j) | yij=1}

(
√
(i− u)2 + (j − v)2) (2)

mij =

{
1, if dij ≤ α
e−β(dij−α), if dij > α

(3)

However, when mij depends only on the close neighbor-
hood of nuclei boundary, it does not contain any informa-
tion about stroma, cytoplasm or lumens. Thus, we modify
the mask by employing the background cluster obtained with
k-means to provide more information about the background.
The modified weight mask is denoted as m̂ij and given in
Eq.(4), where b represents the background cluster, 	 denotes
the erosion operation by a circular structuring element c and
λ is the weighing coefficient. Due to higher uncertainty, the
background cluster is given less importance than the nuclei
boundary that is represented by mij , via a λ value less than 1.

m̂ij = mij ] λ(b	 c) (4)

As an example, Figure 2 illustrates an image from the
training set, as well as the partial annotations and the pro-
posed background mask with λ = 0.5.

As the final modification, we employ L2 regularization
on the weights w of convolutional layers in order to avoid
overfitting. Eq.(5) summarizes the resulting loss function that
we minimize to train our neural network.

L =
∑

(i,j)∈WxH

yij log ŷ
fg
ij + m̂ij(1− yij) log ŷbg

ij + γ‖w‖22 (5)

(a) Image (b) Annotation (c) Weighted
Background Mask

Fig. 2: Use of partially annotated dataset for segmentation

3. EXPERIMENTS

In this section, after providing the implementation details, we
first qualitatively demonstrate the performance of the trained
architecture on the test set. Then, we present the comparative
analysis of our method and the method in [8] on two other nu-
clei segmentation datasets, introduced in [14] and [12], both
of which are fully annotated. Neither of the algorithms have
used any examples from these two datasets for training.

3.1. Implementation Details

The dataset introduced in [8] is composed of 141 hematoxylin
and eosin (H&E) stained images of size 2000x2000 at 40x
magnification. We use a split of 121/5/15 for training, vali-
dation and testing. Smaller patches of size 256x256 are ex-
tracted from the training set, where the morphologically di-
lated foreground and background masks have more nonzero
pixels than a certain threshold, 10% and 40% of total number
of pixels, respectively. Although the data augmentation is not
applicable to every problem, biomedical image analysis ben-
efit from the algorithms that are equivariant to rotations and
translations. Thus, to avoid overfitting and improve genere-
lizability, we use data augmentation by 90 degree rotations,
flipping and elastic deformations. In the end, 71842 patches
are extracted for training by sliding a window of size 256x256
over the training images with a stride of 128.

Training is performed on Tensorflow by using Adam opti-
mizer for 100K steps of update, with a batch size of 6, which
took less than 15 hours using an old generation of NVIDIA
Titan X GPU. The learning rate is initialized as 10−3 and mul-
tiplied by a factor of 0.95 once every 1,000 iterations with a
lower limit of 10−5. The coefficient for weight regularization
is chosen to be γ = 10−5.

For inference, once the input image of an arbitrary size
is provided, patches of size 256x256 are extracted by a slid-

(a) Image (b) [8] (c) Proposed method
Fig. 3: Samples from the test set and output masks generated
by [8] and the proposed method
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Table 1: Performance of the proposed algorithm in comparison to [8] for datasets presented in [13] (DS1) and [12] (DS2)

Recall Precision F1 score Accuracy JI (IoU) AJI Time (sec)

D
S

1 pp

[8] 0.35 (0.21) 0.91 (0.06) 0.45 (0.21) 0.92 (0.02) 0.32 (0.18) 0.84 (0.04) 467.88 (13.67)
Proposed 0.60 (0.14) 0.89 (0.04) 0.70 (0.10) 0.94 (0.02) 0.55 (0.11) 0.88 (0.03) 0.47 (0.01)

al
l [8] 0.33 (0.23) 0.92 (0.08) 0.44 (0.23) 0.92 (0.06) 0.31 (0.20) 0.85 (0.10) 467.88 (13.67)

Proposed 0.60 (0.17) 0.90 (0.06) 0.70 (0.13) 0.94 (0.04) 0.55 (0.14) 0.89 (0.08) 0.47 (0.01)

D
S

2 [8] 0.59 (0.23) 0.81 (0.15) 0.63 (0.18) 0.85 (0.08) 0.49 (0.17) 0.70 (0.14) 1642.99 (39.91)
Proposed 0.73 (0.16) 0.82 (0.09) 0.76 (0.12) 0.89 (0.06) 0.62 (0.13) 0.78 (0.10) 1.84 (0.06)

ing window with a stride of 128. Batching all the extracted
patches, we efficiently obtain foreground and background
probability maps by forward propagation. The binary seg-
mentation map is then generated via maximum likelihood
approach for each patch. In order to obtain the segmenta-
tion mask for the whole image, we merge the masks of these
overlapping patches by considering the central part of size
128x128 to be valid, in order to avoid the artifacts due to
convolutions with zero padding.

3.2. Qualitative Analysis

Figure 3 demonstrates some patches extracted from the test
set, accompanied by the outcome of our network, and of
the network in [8]. Although both algorithms perform com-
parably good, generation of the output mask takes 10 sec-
onds on average using our framework for an image of size
2,000x2,000, whereas the method in [8] needs an average of
3.5 hours with the Python-Caffe toolkit provided with [8].
Both algorithms are tested on a single NVIDIA Titan X GPU.

Furthermore, the performance of a method on different
datasets resembling different acquisition techniques is of vi-
tal importance as it is a very realistic scenario. Figure 4 il-
lustrates some patches from datasets in [14] and [12], ac-
companied by the outcomes of our method. It is important
to emphasize that we do not employ any pre-processing or
post-processing steps while testing our method on different
datasets. Hence, uncluttered segmentation results that can
generalize well over different datasets are a clear benefit of
our architecture and loss design.

Fig. 4: Sample outputs from datasets in [14] (first row) and
[12] (second row)

3.3. Quantitative Analysis

For a quantitative analysis, we test both algorithms on fully
annotated datasets of [14] (DS1) and [12] (DS2). DS1 cor-
responds to 50 H&E images of size 500x500, taken from 11
different patients. On the other hand, DS2 is composed of
30 H&E images of size 1,000x1,000 with groundtruth that
are obtained from 7 different organs. As proposed in [13],
which uses a preliminary version of DS1 for training and
testing, evaluation metrics are averaged over patients (per-
patient: pp), yet, we also compute the average values over
the whole dataset (all). For generating the output masks, we
apply the exact same procedure described in Section 3.1 with-
out any further training or fine tuning the model.

For evaluation, we use two groups of metrics to estab-
lish the performance of algorithms both regarding per-pixel
classification success and object detection outcome. As per
pixel metrics, we use recall, precision and accuracy values
as well as F1 score and Jaccard Index (JI), also known as
Intersection over Union (IoU). On the other hand, we use ag-
gregated Jaccard index (AJI), which is proposed in [12], as
per-object metric. Table 1 summarizes the performance eval-
uation and articulates the consistently superior performance
of the proposed method with an emphasis on the computation
time, which is orders of magnitude smaller compared to the
method in [8].

Both qualitative and quantitative analyses reveal the effi-
cacy of the proposed method regarding speed and accuracy.

4. CONCLUSION

In this paper, we presented an approach that employs DCNNs
for automated nuclei segmentation in histopathology images.
Our loss function enables the deconvolutional segmentation
architecture to benefit from sparsely annotated datasets for ef-
ficient training and shorter inference time. The masking term
not only exploits the unsupervised clustering algorithms to
alleviate partial annotations, but also lets us give higher im-
portance to boundary pixels to overcome the clutter problem
without a costly post-processing step. Our superior perfor-
mance in different datasets points out the ability of the pro-
posed framework to generalize well, due to the proper nor-
malization layers introduced in the architecture.

https://github.com/denizmsayin/nuclei-segmentation

1023



5. REFERENCES

[1] Humayun Irshad, Laleh Montaser-Kouhsari, Gail Waltz,
Octavian Bucur, JA Nowak, Fei Dong, Nicholas W
Knoblauch, and Andrew H Beck, “Crowdsourcing im-
age annotation for nucleus detection and segmentation
in computational pathology: evaluating experts, auto-
mated methods, and the crowd,” in Pacific Symposium
on Biocomputing Co-Chairs. World Scientific, 2014, pp.
294–305.

[2] Humayun Irshad, Antoine Veillard, Ludovic Roux, and
Daniel Racoceanu, “Methods for nuclei detection, seg-
mentation, and classification in digital histopathology:
a review—current status and future potential,” IEEE
reviews in biomedical engineering, vol. 7, pp. 97–114,
2014.

[3] Derek Magee, Darren Treanor, Doreen Crellin, Mike
Shires, Katherine Smith, Kevin Mohee, and Philip
Quirke, “Colour normalisation in digital histopathol-
ogy images,” in Proc Optical Tissue Image analysis in
Microscopy, Histopathology and Endoscopy (MICCAI
Workshop). Daniel Elson, 2009, vol. 100.

[4] Yousef Al-Kofahi, Wiem Lassoued, William Lee, and
Badrinath Roysam, “Improved automatic detection and
segmentation of cell nuclei in histopathology images,”
IEEE Transactions on Biomedical Engineering, vol. 57,
no. 4, pp. 841–852, 2010.

[5] Mitko Veta, Paul J Van Diest, Robert Kornegoor, André
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