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ABSTRACT

Accurately estimating the size of tumours and reproducing
their boundaries from lung CT images provides crucial infor-
mation for early diagnosis, staging and evaluating patients re-
sponse to cancer therapy. This paper presents an advanced so-
lution to segment lung nodules from CT images by employing
a deep residual network structure with Atrous convolution.
The Atrous convolution increases the field of view of the fil-
ters and helps to improve classification accuracy. Moreover,
in order to address the significant class imbalance issue be-
tween the nodule pixels and background non-nodule pixels, a
weighted loss function is proposed. We evaluate our proposed
solution on the widely adopted benchmark dataset LIDC. A
promising result of an average DCS of 81.24% is achieved,
outperforming the state of the arts. This demonstrates the ef-
fectiveness and importance of applying the Atrous convolu-
tion and weighted loss for such problems.

Index Terms— Nodule segmentation, Deep learning,
Atrous convolution, weighted loss

1. INTRODUCTION

Lung cancer is recognised as one of the most common types
of cancer yet by far the deadliest [1]. Lung nodule analy-
sis and treatment monitoring are effective strategies for early
lung cancer diagnosis and survival time improvement. Radi-
ologists usually have to manually look for malignancy in a
pool of images and experimentally match cancer related fea-
tures to candidate tumours. This manual process easily leads
to some features being missed in many cases, yet there exist
many features which cannot be extracted visually, but can be
with an automated system. Inter-observer variation is another
major problem of manual nodule segmentation. The disagree-
ment between radiologists in segmenting nodules is reported
to be between 2% to 49% [2]. The above mentioned facts are
the primary motivation of developing an automatic segmenta-
tion model capable of segmenting the nodule accurately with
a robust performance.

Recently, Convolutional Neural Networks (CNNs) based
deep learning technologies have revolutionised many fields
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including semantic image segmentation. Semantic segmenta-
tion is a computer vision task to recognize, localize and un-
derstand what is in the image at the pixel level. Deep learning
based medical image segmentation has been used widely in
organ segmentation to segment target organs from the neigh-
bouring tissues [3, 4] as well as in tumour and lesion segmen-
tation for cancer detection and staging [5, 6]. Specifically, in
lung tumour segmentation, deep learning based methods have
achieved significant improvement, such as in [7, 8]. Since
the introduction of the Fully Convolutional Neural Networks
(FCNs) [9], the performance of CNNs in semantic segmenta-
tion has been improved significantly. One of the most famous
derivations of the FCN in medical image segmentation is the
U-Net [10].

The heterogeneous appearance of lung nodules and also
the presence of similar characteristics between nodules and
their surroundings is a serious technical challenge in devel-
oping a robust segmentation model. A common solution is
to have multiple re-scaled versions of the same image [11,
12] and perform the segmentation on multi-scale images and
combine the results. Although it has been noted that this
approach can boost accuracy, it comes at the cost of the in-
creased computational load.

Nam et al. in [13] utilized the nodule diameter informa-
tion to implement a sampling loss. In their approach, instead
of calculating the loss for all the pixels of a patch, N random
pixels within the patch are selected and evaluated. The infor-
mation about the nodule diameter helped to limit the radius
in which the random pixels could be chosen. In [8], a central

Fig. 1. Illustration of the Atrous convolution with various
rates showing enlarged field of view.
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Fig. 2. The block diagram of the proposed network.

pooling layer was proposed, which preserved most features
related to the centre of the patch and eliminated the redun-
dant edge features. Moreover, 2D and 3D pathways were de-
veloped to separately analyse the 2D and 3D samples, and at
the end, corresponding feature maps were combined for final
evaluation, which yielded a significant improvement in lung
nodule segmentation.

Both of the above mentioned methods, [13] and [8], are
still bound to a fixed receptive field size for the kernels which
affects the localization power of the network. In our work,
we explore the state-of-the-art deep residual structure with
Atrous convolution, to increase the field of view of the filters
and improve the recall rate. Moreover, through our develop-
ment, we observed the significant class imbalance issue be-
tween the nodule and non-nodule regions, for which we pro-
pose a weighted loss function.

The main contributions of the proposed model are in three
folds: 1) Introducing the Atrous convolution to increase the
field of view of the filters. 2) Applying very deep network
structure to improve the segmentation accuracy. 3) Applying
a weighted loss to address the class imbalance issue associ-
ated with lunch nodule segmentation.

The rest of the paper is organised as follow: Section 2
details the methods used in this study and Section 3 analyses
the achieved results. The paper concludes in Section 4.

2. THE PROPOSED METHOD

2.1. Atrous Convolution

Scale variation in lung nodules is a challenging problem
which has been addressed in other works by simply training
the model on a dataset containing varying scales of tumours.
The Deep Convolutional Neural Networks (DCNN) usually
employ small kernels for convolution to keep the number of
parameters and computation in balance. Such small kernels
unavoidably cause the loss of localization power.

An Atrous convolution, as illustrated in Fig. 1, with the
rate of r will increase the field of view of a kernel of k × k
to ke = k+ (k− 1)(r− 1) without increasing the number of
parameters and computation. They can provide more resolu-
tion enhancement, and also help to enlarge the field of view
of filters [14], which enables the filters to consolidate more
contextual information. This property of Atrous convolutions
will help to mitigate the object scale issue by extracting score
maps from multiple re-scaled versions of original input.

2.2. Weighted Loss

In training a deep neural network for semantic segmentation
of medical images, there is typically a significant issue of
class imbalance, i.e., the number of pixels belonging to differ-
ent classes in training samples are significantly imbalanced.
Since the target class, i.e., the nodule region, only occupies a
small portion of the image and most of the image area is back-
ground, the model always gets heavily biased to the back-
ground class. In such condition, the model will ignore the
weights related to minority class after just a few steps of train-
ing and consequently, deliver a very poor output on the target
class.

One way to combat this problem is patch-wise training
combined with patch selection, as proposed in [8]. In this ap-
proach, during the creation of the training set, a control mech-
anism can be set to have a balanced number of patches from
the background and foreground [3]. The same strategy can be
used to balance the number of pixels belonging to each class
within the patch itself. In this solution, only limited surround-
ing area (background) around the tumour will be extracted to
build up the patch [13, 15].

Another solution for such a class imbalance issue is sam-
pling loss in which N random pixels are selected, and the loss
will be calculated just on selected pixels instead of calculating
for the entire image pixels [13]. However, the effectiveness
highly depends on the value of N , to be a good representative
of all pixels.

In our method, we apply a weighted loss. The general idea
of weighted loss is to push the network to calculate the loss
by assigning different coefficients to tumour and non-tumour
pixels, so that the loss for minority tumour and majority non-
tumour pixels will not be treated equally. This means by ap-
plying a higher ratio to the tumour pixels, their corresponding
loss will contribute more to the overall loss and hence, the
network is forced to learn more from the foregrounds than the
background.

To calculate the loss coefficient, tumour and non-tumour
related pixels are counted throughout all the training set sam-
ples. Then, this ratio is applied to the individual loss of
the pixels. Lets get pi and pj two pixels belong to sample
Sn. Function B(x) determines the belonging class of pixel
x which could be tumour class = c1 or non-tumour class =
c2. ytrue and ypred are the actual and prediction value for
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Fig. 3. Examples of the segmentation results, where the green lines indicate the ground truth and the yellow lines indicate the
prediction obtained with our approach.

a given pixel. The weighted loss of the sample Sn will be
calculated according Eq. 1, where r1 and r2 are the ratios of
tumour pixels and non-tumour pixels account for throughout
all training samples, respectively, and K is the total number
of classes, i.e., 2 in this case for two classes.

Loss(Sn) = (1)

r1 ×

[ ∑
(pi∈Sn|B(pi)=C1)

K∑
k=1

(−yktrue(pi) log(ykpred(pi))

]
+

r2 ×

[ ∑
(pj∈Sn|B(pj)=C2)

K∑
k=1

(−ytrue(pj)k log(ykpred(pj)

]

2.3. Residual Network

Our proposed structure uses a very deep residual structure for
nodule segmentation. Majority of CNN structures are com-
posed of stacking multiple layers each performing a function
of F and the output of Yn, as:

Yn = f(Y(n−1);Wn)

Theoretically, it is proven that deeper networks have a higher
capability to learn [16], as a deep network can represent all
functions of a shallow network and some more from the added
layers. However, deeper networks suffer from gradient van-
ishing problem and also the more pressing issue of degrada-
tion. He et al. [17] introduced the residual networks, in which
instead of consecutively feeding the stacked layers with the
feature map, a residual map fed to every few layers. In other
words, the residual maps, which are skip connections, allow
the network to redirect the derivatives through the network by
skipping some layers, as:

Yn = Yn−1 + f(Yn−1,Wn)

It has been observed that the residual network structure has
superior training properties compared to the traditional feed-
forward convolutional networks [17].

Resnet101 [17] is used as the deep convolutional neural
network for that this structure helps to mitigate the problem
of gradient vanishing. In the end, we employ a fully con-
nected conditional random field (CRF) to improve the seg-
mentation accuracy by capturing the fine details. The CRF is
jointly trained with the DCNN to build an End-to-End train-
ing system (Fig 2). The CRF helps the model to get a sharper
segmentation at the boundary pixels.

3. EXPERIMENTS AND DISCUSSION

To demonstrate the feasibility of our proposed solution, we
trained and tested our model on the LIDC dataset [18]. In
this section, we first briefly introduce the dataset and training
procedure, and then quantitative and qualitative experimental
results are presented.

3.1. Data

The LIDC dataset [18] contains 1024 cancer (positive) CT
cases, each case may have 100 to 400 slices depending on the
physical characteristic of patients. The LIDC dataset has the
full annotation of the slices separately reported by four differ-
ent radiologists. The annotation has both the position of the
tumour centre and the pixel location of the tumour boundary.

The input to the model are patches of 100×100×3 pixels,
with the greatest in-plan dimension of 3mm and above. All
inputs are assumed to contain the tumour, as the focus of this
work is the segmentation. To create the patches an imaginary
bounding box is drawn around the tumour and then the patch
is extracted from the original image.

To create an 8-bit RGB image from the DICOM image,
we mapped the Hounsfield Units (varies from -2000 to 4000
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Table 1. Performance comparison of different models on their mean Dice score and Precision ± standard deviation
Methods Dice (%) Precision (%)

Graph Cut [8] 68.90± 16.03 65.09 ± 22.42
U-NET [8] 79.50± 13.95 87.18 ± 16.13

Simple Diameter [13] 78.78 ± 18.68 74.17 ± 23.68
CF-CNN (2D) [8] 80.47 ± 10.76 75.84 ± 13.14

Our method 81.24 ± 1.40 79.75 ± 4.08

HU) to the range of 0 to 255. Then, we created a standard
gray image from the generated matrix.

We perform image normalisation by subtracting each
colour channel from its corresponding mean image, which is
collected by averaging the whole dataset values. Since the
single grey image is duplicated in all three channels, the same
mean image is deducted from all three channels. The image
normalisation will help to improve the network convergence
speed and reduce the training time.

3.2. Training

For training of the network, we have employed the patch-wise
training strategy from scratch. Although many researchers
believe that the transfer learning may result in better per-
formance, there are some experiments showing that training
from scratch delivered better results compared to fine-tuning
a pre-trained network [19].

All the experiments were run on Linux (REH7.0) using
Nvidia Quadro P4000 GPU with 8GB of memory and the
Tensorflow library (version 1.8.0).

3.3. Experiment results

To evaluate the accuracy of the system we measure the Dice
score of segmentation, denoted as DSC, which is defined as:

DSC =
2|X ∩ Y |
|X|+ |Y |

or DSC =
2TP

2TP + FP + FN
(2)

In Eq. 2, TP represents the number of the pixels which are
correctly classified into the correct classes X and Y , and sim-
ilarly FP are the number of pixels which are misclassified.

Moreover, the average precision is also measured to en-
able us to compare our model with the state of the arts, which
is defined in Eq. 3:

Precision =
TP

TP + FP
(3)

We used 300 scans for the training of the network which
is only one-third of the samples used in [13] and [8] which
are trained on full dataset. The lower number of samples be-
ing used demonstrates the efficiency of our model and also
reduces the dependency on annotated data. The samples are
randomly split to train and validation tests. To validate our

results we performed 10-fold cross-validation. Visualised re-
sults of the segmentation by our model allows us to see the
output of network against different types of nodules.

In Fig. 3, some example nodules and their corresponding
segmentation results are shown to show the performance of
the network on different types of nodules.

As the LIDC dataset consists of different types of nodules,
our low standard deviation emphasises on the robustness of
the system against different types of nodules. Moreover, us-
ing a deep network structure not only helps to improve the
segmentation performance but also increases the robustness
of the network. Thus, as it can be seen in Table 1, the stan-
dard deviation of our results is much lower compared to oth-
ers, which shows improved network stability.

Arguably, the high False Positive rate is the most common
issue of lung nodule segmentation models, and it is a key el-
ement which discriminates two networks. Our second-ranked
precision results represent the lower FP compared to other
methods. The proposed model by incorporating more contex-
tual information and also deep residual network was able to
reduce the false positive.

By analysing the results pertained in Table 1, it can be ob-
served that we achieved the highest dice score and very com-
petitive precision. In other words, our model tends to predict
larger area compared to actual tumour area. This could be
considered as the side effect of atrous convolution in tumour
segmentation.

4. CONCLUSION

In this study, we have presented a deep CNN model for lung
nodule segmentation. We employed the Atrous convolution to
increase the receptive field of the filters and processed more
contextual information at the same computational cost. We
employed a very deep model for the segmentation which can
learn more and delivered higher accuracy. Meanwhile, we
addressed the class imbalance issue and small organ segmen-
tation in deep network structures by applying the weighted
loss. The model was tested on the public benchmark dataset
LIDC and has been demonstrated to deliver an average Dice
score of 81.24 with very low standard deviation of 1.40.
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