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ABSTRACT

We introduce a novel framework for the fusion of retinal OC-
T and confocal images of mice with uveitis. Input images
are semi-automatically registered and then fused to provide
more informative retinal images for analysis by ophthalmol-
ogists and clinicians. The proposed feature-based registra-
tion approach extracts vessels through the use of the ISO-
DATA algorithm and morphological operations, in order to
match confocal images with OCT images. Image fusion is
formulated as an inverse problem, with the corresponding cost
function containing two data attachment terms and a non-
convex penalty function (the Generalized Minimax-Concave
function) that maintains the overall convexity of the problem.
The minimization of the cost function is thus tackled by con-
vex optimization. Objective assessment results on image fu-
sion show that this novel image fusion method has compet-
itive performance when compared to existing image fusion
methods. Some features of retina that cannot be observed di-
rectly in the original images are shown to be enhanced in the
fused representations.

Index Terms— Retinal image analysis, multimodal im-
age registration, non-convex penalty, GMC, image fusion

1. INTRODUCTION

Multimodal image fusion can provide more informative im-
ages especially for medical imaging in which image registra-
tion is often the first critical step. Accurate image registration
is crucial as fusing misaligned images together will not only
provide less information but also wrong information [1]. Reti-
nal images are usually registered by featured-based methods
instead of intensity-based methods. The challenge of register-
ing OCT image and confocal images is that confocal images
captured ex vivo are rare in retinal image analysis, and OCT
images of rodent eyes have very low quality. There are no ex-
isting methods that can be applied directly to these datasets.
Thus, a multimodal retinal image registration method for this
special dataset is needed.

Recently, numerous signal and image processing tech-
niques including image fusion based on sparse approxima-
tion were proposed by researchers [2]. It is common to use
L1-Norm regularized least squares method to find solutions

of sparse approximations. Instead of using L1-Norm regular-
ization, Selesnick [3] introduced a novel non-convex penalty
function, the Generalized Minimax-Concave (GMC), which
can avoid the systematic underestimation effect of the L1-
Norm, but is able to maintain the overall convexity of the cost
function. The GMC penalty has been proved to be superior
to L1-Norm regularization and some other non-convex reg-
ularization in 1-D signal restoration. The cost function with
GMC penalty is formulated as:

F pxq “
1

2
}y ´Ax}22 ` λΨBpxq, λ ą 0, (1)

where ΨBpxq is the non-convex GMC penalty, defined as:

ΨBpxq “ }x}1 ´ SBpxq, (2)

where SBpxq is the generalized Huber function defined in the
form of an infimal convolution:

SBpxq “ min
vPRN

p}v}1 `
1

2
}Bpx´ vq}22q. (3)

The cost function F pxq is convex when:

BTB ď
1

λ
ATA, (4)

with suitableB matrix chosen, the convexity of the cost func-
tion F pxq is maintained and the solution can be found through
convex optimization.

In this paper, a feature-based semiautomatic image regis-
tration method for mouse retinal OCT and confocal images is
proposed. The GMC penalty is applied to 2-D signal field for
image fusion. The paper presents the steps of image registra-
tion, and introduces the novel image fusion model based on
sparse approximation and GMC penalty. The results of the
proposed image registration and fusion are also presented and
discussed.

2. METHODOLOGY

2.1. Multimodal image registration

The proposed registration method is feature-based and semi-
automatic. One OCT image with less noise and clearer vessel
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contour is selected to be the reference image and all confo-
cal images are set as moving images. Features used to cre-
ate point-by-point correspondence between OCT and confo-
cal images are vessels, the centroid and the perimeter of the
optic disc. Steps for registration include vessel segmentation,
optic disc localization, and similarity measurement.

As OCT images display only main vessels and the red
channel in confocal images contains capillaries, while the
blue channel does not show the shape of any vessel, the green
channel is segmented to achieve more accurate similarity
measurement result. The unsupervised ISDODATA (Iterative
Self-Organizing Data) classification method [4] is used to
classify vessel elements in images. In the binary image, pix-
els considered as vessel are with value one and background
with zero (Fig 1 c, d).

As optic disc is where vessels converge in retina, the co-
ordinate of the optic disc centroid is used as a reference point
for initial translation, and the size of the optic disc is used
for initial scaling. Optic disc localization is implemented
through morphological operations, which involve erosion,
which achieves image shrinkage and dilation, which scales
up the image [5]. A square region where optic disc lies is
constrained and eroded to separate the vessels from the op-
tic disc. Separated vessels are eliminated and the image is
then dilated to restore pixels of optic disc removed by ero-
sion. Then, the centroid and the area of the optic disc can be
calculated.

To find the best geometric transformation criterion for
registration, the binary confocal images are rotated from 0
to 360 and scaled within a certain range at each angle after
the initial scaling. The XOR (exclusive-OR) based similari-
ty measurement is executed simultaneously at each rotation
angle and each scaling size for every image. The sum of
the numeric results from every XOR operation is defined as
misalignment value, the smaller the misalignment value, the
better the matching. When the lowest misalignment value is
reached for the first confocal image, the best transformation
criterion for this confocal image is found and the correspond-
ing rotation angle and scaling size are stored. A new confocal
image is imported and all the steps above are repeated to
find its transformation criterion. The new transformation
criterioncriterion is compared to the former transformation
criterion, if the new misalignment value is lower, the best
transformation criterion will be replaced by the new one;
if not, the best transformation criterion remains to be the
previous criterion. Images registered according to the best
transformation criterion are then ready for fusion.

2.2. Multimodal image fusion

To allow 2-D image fusion, the general cost function (1) in
1-D signal processing is extended as:

Jpxq “
1

2
}y1 ´ β1H1Wx}22 `

1

2
}y2 ´ β2H2Wx}22

` λΨBpxq, λ ą 0,
(5)

where y1 and y2 are the two input images, β1 and β2 are two
sensor selectivity coefficients (sensor gain) to be estimated
through principal component analysis (PCA) [6], H1 and H2

are the point spread functions, which represent convolution
operators, W represents the discrete wavelet transform, λ is
the regularization parameter, x̂ is the fused result. The cost
function is proved to be convex when:

B “

c

γ

λ
pWTHT

1 β
2
1H1W `WTHT

2 β
2
2H2W q, 0 ď γ ď 1.

(6)
Proof: Let v P RN , and

Z1 “
1

2
}y1 ´ β1H1Wx}22, (7)

Z2 “
1

2
}y2 ´ β2H2Wx}22. (8)

Then the cost function

Jpxq “ Z1 ` Z2 ` λΨBpxq

“ Z1 ` Z2 ` λ}x}1 ´ min
vPRN

pλ}v}1 `
λ

2
}Bpx´ vq}22q

“ max
vPRN

`

Z1 ` Z2 ` λ}x}1 ´ λ}v}1 ´
λ

2
}Bpx´ vq}22

˘

“ max
vPRN

´1

2
xTZ3x` λ}x}1 ` gpx, vq

¯

“
1

2
xTZ3x` λ}x}1 ` max

vPRN
gpx, vq,

(9)

where

Z3 “WTHT
1 β

2
1H1W `WTHT

2 β
2
2H1W ´ λBTB, (10)

where gpx, vq is affine in x, max
vPRN

gpx, vq is convex since it is

the pointwise maximum of a set of convex functions. There-
fore, if Z3 in (9) is positive semidefinite, the cost function
Jpxq can be proved to be convex. Hence the cost function (5)
is convex when the suitable matrix B meets (6).

The image fusion model for single channel images can be
derived from the model above by setting the operators as the
identity matrix (H1 “ H2 “ I), so that the cost function for
image fusion is:

Jpxq “
1

2
}y1 ´ β1Wx}22 `

1

2
}y2 ´ β2Wx}22

` λΨBpxq, λ ą 0.
(11)
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The condition for convexity is:

B “

c

γ

λ
WTpβ2

1 ` β
2
2qW. (12)

As the sensor gain is the normalized eigenvalue, it satis-
fies:

β2
1 ` β

2
2 “ 1. (13)

Thus, the convexity condition can be simplified as:

B “

c

γ

λ
W, λ ą 0. (14)

While the cost function has met the condition of convexity, the
minimization problem of the cost function can be regarded as
a saddle-point problem [3] which can be rewritten as:

pxopt, voptq “ arg min
xPRN

max
vPRN

F px, vq, (15)

where

F px, vq “
1

2
}y1 ´ β1Wx}22 `

1

2
}y2 ´ β2Wx}22

` λ}x}1 ´ λ}v}1 ´
γ

2
}W px´ vq}22, λ ą 0.

(16)

As saddle-point problems are instances of monotone in-
clusion problems, they can be solved by an iterative algorith-
m, such as the forward-backward splitting (FBS) [7]. The
iterative thresholding algorithm is based on the soft thresh-
olding function, which is defined as:

softpx, yq “ pmaxp|x| ´ y, 0qqsignpxq. (17)

Let 0 ă µ ă
2

ε
, where ε “ max

´

1,
γ

1´ γ

¯

. Then the

seuqences xpiq and vpiq, i P N , generated by the iteration:

wpiq “ xpiq ´ µrWTβ1pβ1Wxpiq ´ y1q

`WTβ2pβ2Wxpiq ´ y2q

` γWTpW pvpiq ´ xpiqqqs,

(18)

upiq “ vpiq ´ µγWTpW pvpiq ´ xpiqqq, (19)

xpi`1q “ softpwpiq, µλq, (20)

vpi`1q “ softpupiq, µλq, (21)

converge to a minimizer of the objective function defined by
function (16). After the solution of pxopt, voptq is found, the
fused image is restored by taking an inverse DWT of the s-
parse approximation of the fused image x̂. In this work, the
number of iterations i is set to 25, λ is 0.001, γ is 0.8, and the
number of decomposition level is level 2.

To keep colour information in confocal images, duplica-
tions of the greyscale OCT images are concatenated to create
a three channel OCT image. Same channel in OCT and con-
focal images are fused separately and concatenated after. The
image fusion algorithm is applied to both images in RGB for-
mat and HSV format where λ and γ remain the same. Before
fusion, intensities of confocal images are adjusted to achieve
better fusion results.

Fig. 1. Multimodal retina image registration a, original OCT
image; b, original confocal image; c, segmented OCT image;
d, segmented green channel confocal image; e, registered OC-
T (green) and confocal (purple) image

3. RESULTS AND DISCUSSION

The images used in this paper are from mice with autoim-
mune uveitis induced by immunizing with peptide derived
from retinol binding protein-3, peptide 1-20. This provokes
an immune response that causes inflammation in the retina.
The process is controlled by CD4+ T-lymphocytes.

OCT scans were acquired using the Micron IV fundus
camera and an OCT scan head equipped with a mouse objec-
tive lens (Phoenix Technologies, California) at different time
points (days 10, 14, 17, 24) in vivo. B scans are preprocessed
[8] to build the B scan cube. Enface of the OCT B scans (day
24) used for registration and fusion are extracted from the B
scan cube (Fig 1 a).

The mice were killed on day 25 to carry out confocal
images ex vivo. Four incisions around the outside of the
retina were made to allow it to be flat-mounted. Retinas
were stained with antibodies attached to four different fluo-
rochromes. Images were processed to four colour channels:
blue (DAPI) stains cell nuclei, green (Alexa-488) stains CD4+
T cells which mainly lie in veins, red (rhodamine red, stain-
ing isolectin IB4) stains endothelial cells lining blood vessels
and white (Alexa-633, staining Iba1) stains microglia and
macrophages. Serial images were obtained through the thick-
ness of the retina using a Leica SP5-AOBS confocal laser
scanning microscope attached to a Leica DM I6000 inverted
epifluorescence microscope (Fig 1 b).

3.1. Multimodal image registration

Registration results are shown in Fig 1 e. The optimal rotation
angle derived from the semiautomatic registration algorithm
for confocal images is 116˝, and confocal images shrink to
58.6% of the original size.

Most vessels are well registered but there are still some
misalignments mainly because images captured by differen-
t imaging techniques naturally have distortions, especially
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Wavelet-mean L1-Norm GMC

Fig. 2. Retina images fused through wavelet-mean, L1-Norm,
and GMC method. a, b and c are grey images; d, e and f are
grey-RGB images; g, h and i are HSV images

when OCT images are not flattened but confocal images are
naturally flattened as they are captured ex vivo. Thus, non-
rigid transformation and proper OCT flatten algorithm are
needed.

Furthermore, the poor quality of the OCT images makes
vessels in OCT images to not be perfectly segmented. Al-
though denoising methods such as wavelet hard/soft thresh-
olding filter, bilateral filter, etc. are applied, they only provide
very limited denoising effect but more of complicating the al-
gorithm. Therefore, more efficient denoising methods should
be applied in future work.

3.2. Multimodal image fusion

Fusion results are presented in Fig 2. As a comparison, im-
ages are also fused by classical wavelet domain image fusion
algorithm with average coefficients (wavelet-mean) [9], and
inverse modal with L1-Norm regularization [10]. Compared
to original images, fused grey images visually present clear-
er vessel edges. Grey-RGB images preserved color informa-
tion in confocal images which can help clinicians learn more
about vessel types and distribution in retina. HSV images
have strong visual impact compared to RGB images. No mat-
ter under which image fusion format, the main difference be-
tween images gained through wavelet-mean method and other
two methods is the luminance.

Features that cannot be observed directly from original
images appeared after image fusion. It can be observed from
the grey-RGB images (Fig 2 d, e, and f) that the neighbors
of a green vessel are two red vessels and the neighbours of a
red vessel are two green vessels. The alternately distributed

red vessels and green vessels indicate that arteries and veins
in mouse retina are alternately distributed which is consistent
with known anatomical facts.

Three different assessment metrics, Piella’s metric [11],
Cvejic’s metric [12], and Xydeas’s metric [13], are used for
objective performance evaluation (Table 1). Quality metrics
range between 0 and 1 with 0 as worst and 1 as best results.For
grey image fusion, GMC and L1-Norm method present sim-
ilar performance and are better than wavelet-mean method.
For grey-RGB image fusion, GMC shows its advantages over
both L1-Norm and wavelet-mean methods. However, L1-
Norm shows its advantage over the other two methods in HSV
image fusion, especially with Xydeas’s metric and Cvejic’s
metric. The overall numeric results indicate that the GM-
C regularization and the L1-regularization have competitive
performance in image fusion and they all perform better than
the classical wavelet-mean method.

Table 1. Objective assessment results of grey image,
grey-RGB image, and HSV image fusion

Metric Wavelet-Mean L1-Norm GMC

Grey
Piella 0.5248 0.7203 0.7257
Cvejic 0.3906 0.5419 0.5454
Xydeas 0.2380 0.5306 0.5275

Grey-
RGB

Piella 0.5491 0.7520 0.7589
Cvejic 0.4062 0.5706 0.5982
Xydeas 0.2562 0.5653 0.5810

HSV
Piella 0.3291 0.7991 0.7672
Cvejic 0.3154 0.6453 0.5810
Xydeas 0.2962 0.6867 0.5982

4. CONCLUSION AND FUTURE WORK

This paper provides a featured-based semiautomatic mul-
timodal retinal image registration approach for registering
mouse OCT retinal images with confocal retinal images.
This registration method efficiently registers mouse OCT
retina images with confocal retinal images and can be applied
not only to the dataset used in this work but also similar
dataset with only a few parameters (erosion and dilation lev-
el, etc.) changing. Nevertheless, improvements are needed
in vessel segmentation in OCT image and spatial misalign-
ment elimination between multimodal images to deliver more
accurate image registration.

The GMC penalty is extended to 2-D signal processing to
build a novel image fusion method which is based on sparse
representation and GMC penalty. This method allows fusing
not only greyscale images but also colour images. With multi-
modal retina images fused, some features of retina are clearer,
e.g. the fact that the structure of vessel distribution in retina is
brought to the surface after image fusion. The objective quali-
ty metrics suggest that GMC regularization offers competitive
performance when compared to L1-Norm regularization and
is better than the classical wavelet domain image fusion using
average coefficients in image fusion.
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