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ABSTRACT

Inspired by human hearing perception, we propose a two-
stage multi-resolution end-to-end model for singing melody
extraction in this paper. The convolutional neural network
(CNN) is the core of the proposed model to generate multi-
resolution representations. The 1-D and 2-D multi-resolution
analysis on waveform and spectrogram-like graph are suc-
cessively carried out by using 1-D and 2-D CNN kernels of
different lengths and sizes. The 1-D CNNs with kernels of
different lengths produce multi-resolution spectrogram-like
graphs without suffering from the trade-off between spectral
and temporal resolutions. The 2-D CNNs with kernels of dif-
ferent sizes extract features from spectro-temporal envelopes
of different scales. Experiment results show the proposed
model outperforms three compared systems in three out of
five public databases.

Index Terms— Melody extraction, multi-resolution, con-
volution neural network, end-to-end learning, music informa-
tion retrieval

1. INTRODUCTION

Melody consists of a pitch track which one might hum to rec-
ognize a clip of polyphonic music. Melody extraction is one
of the popular topics in the research field of music informa-
tion retrieval (MIR) [1]. Melody contains important informa-
tion of music and could be further used in many applications
such as query-by-humming [2], version identify [3], and au-
dio source separation [4][5].

The most commonly used data representation of music
in MIR related work is the spectrogram transformed via the
short time Fourier transform (STFT). Recently, there has
been an increasing focus on directly using the raw wave-
form as the data representation for an end-to-end learning
model [6][7][8][9]. In general, the features obtained from the
Fourier spectrogram are effective enough for many applica-
tions. However, the Fourier spectrogram is generated using
a fixed time window such that it uniformly depicts the sound
using a particular temporal and spectral resolution. On the
other hand, psychoacoustic studies show that people detect
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pitch using information embedded in different resolutions.
For the low frequency region, people analyze the sound using
a frequency resolution high enough to resolve each individual
harmonic to decipher pitch. For the high frequency region,
people analyze the sound using a temporal resolution high
enough to decipher the periodicity pitch, which is the re-
ciprocal of the time-domain period of the sound. Based on
this duplex behavior of human pitch perception, we have
built a high-performance composite neural network (NN) for
singing melody extraction by combining a CNN-based NN in
the spectrogram domain and a NN in the time domain [10].
Similarly, a novel representation with combined information
of frequency and periodicity was used to extract the melody
[11].

In addition to the multi-resolution property, human hear-
ing perception is a multi-stage process. Based on neuro-
physiological data, a two-stage auditory model was proposed
in [12]. The first stage estimates the spectrum using a bank
of constant-Q filters by mimicking the frequency selectivity
of the cochlea. The second stage mimics the function of the
auditory cortex (A1), which analyzes the spectral-temporal
envelope of the sound, using a bank of 2-D spectro-temporal
modulation filters. Inspired by these perceptual properties,
we build a CNN-based two-stage multi-resolution end-to-end
model for singing melody extraction in this paper. Unlike
the approach [10], which combines a pure spectral NN at a
fixed resolution and a pure temporal NN, the proposed model
in this paper analyzes the joint spectro-temporal patterns of
the sound at various resolutions to decipher pitch. In the
proposed model, the first stage was implemented using the
1-D CNN to similarly behave as a spectrum estimator. The
second stage was implemented using the 2-D CNN to analyze
the joint spectral-temporal contents of the sound. In order
to extract information embedded in different resolutions, we
used two 1-D CNNs, whose kernels are with different lengths,
in parallel in the first stage.

The rest of this paper is organized as follows. In Section 2,
we describe the architecture of the proposed two-stage model.
In Section 3, we give details of the data preparation and the
configuration of the proposed model. Experiment results on
singing melody extraction are demonstrated in Section 4 and
the conclusion is given in Section 5.
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Fig. 1. Architecture of the proposed model.

2. MODEL ARCHITECTURE

The proposed model is shown in Fig. 1. The first stage
consists of two paralleled 1-D CNNs with kernels of differ-
ent lengths. The input waveform through the first stage pro-
duces two spectrogram-like graph representations resolved by
two frequency resolutions. Then, the second stage utilizes 2-
D CNNs to extract the joint spectro-temporal features from
the spectrogram-like representations. The ’Inception’ mod-
ule [13] is used to expand the width of the model to simu-
late multi-resolution analysis on the graph using 2-D kernels
with different sizes. Finally, the output features of the sec-
ond stage are cascaded for the following two fully connected
layers, each of which has 1024 units, to predict the output
pitch state of the input signal. ReLu is used in all units as the
activation function in the proposed model.

2.1. Settings of the first stage

We used the 1-D CNN as an alternative to Fourier transform
for spectrum estimation. The window size used in the short-
term Fourier transform (STFT) determines the time/frequency
resolution of the analysis and there exists the trade-off be-
tween the time and the frequency resolutions. Similarly, the
length of the 1-D CNN kernels, which can be thought as the
impulse responses of filters, determines the frequency band-
width of the analysis bands. Therefore, using 1-D CNN ker-
nels with the same length is just like performing frequency
analysis using a bank of filters whose bandwidth is limited
by a pre-set minimum value. Therefore, we used two 1-D
CNNs in parallel with different kernel lengths to produce two
spectrogram-like graphs using two limitations on frequency
resolution. Each 1-D CNN can be thought as an independent
channel here.

In our model, two different lengths of the kernels of the
paralleled 1-D CNNs were set to 960 (60 ms) and 64 (4 ms)
and the stride size was set to 16 (1 ms). There were 200
kernels in each 1-D CNN network. After the sound passing

through the 1-D convolutional layer, the average pooling was
performed to somehow downsample the output of the convo-
lutional layer. In our pilot simulations only using each of the
1-D CNNs, we found average pooling can slightly improve
the performance of the network with the kernel length of 960
over maximum pooling. However, the performance boost us-
ing average pooling rather than maximum pooling was not
observed in the CNN with the kernel length of 64. Therefore,
we used average pooling with the pool size of 10 samples in
all of our experiments.

2.2. Settings of the second stage and pre-training

The second stage adopted 2-D CNNs to extract useful spectro-
temporal patterns, which might include the harmonic struc-
ture, temporal continuity, and other melody related pat-
terns. Therefore, the input of this stage should be like a
spectrogram-like graph to have proper spectro-temporal char-
acteristics. However, the proposed model is an end-to-end
learning method such that the output graph of the first stage
exhibits random permutation on the kernel-index axis accord-
ing to the learned weights in the first stage. To address this
problem, we pre-trained a different model consisting of only
one 1-D CNN for melody extraction. Fig. 2 shows the prop-
erly ordered magnitude responses of the kernels with lengths
of 64 and 960 from this pre-trained model. It clearly shows 1-
D kernels with the length of 960 only focus on low-frequency
regions with high frequency resolution. In contrast, those
1-D kernels with the length of 64 can analyze the frequency
regions up to 5 kHz with relatively low frequency resolu-
tion. After the pre-training, the 1-D kernels of the proposed
2-stage model were initialized using these properly ordered
pre-trained kernels shown in Fig. 2.

Three different sizes, including 100×4 (freq×time), 70×
8, and 40 × 12, were selected as the sizes of 2-D kernels in
the second stage to capture the spectral-temporal structures
respectively. In our model, we used 24 2-D kernels in total
(8 kernels for each size) in the second stage without pooling
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(a) kernel length of 64 points (b) kernel length of 960 points

Fig. 2. Magnitude responses of the pre-trained 1-D CNN
kernels with different lengths. Note, the kernels are ordered
based on the frequencies of the maximum responses.

layers. In other words, this stage can be thought as containing
three paralleled 2-D CNNs with different kernel sizes. There-
fore, the input of the second stage contains two spectrogram-
like graphs from the two 1-D CNN channels such that the
proposed second stage will automatically produce suitable 2-
D kernels during training for either the first or the second 1-D
CNN channel.

3. EXPERIMENTS

3.1. Data representation and pitch labels

Because the proposed model is an end-to-end learning model,
the time domain waveforms are taken as the input representa-
tion. We consider melody extraction as a classification prob-
lem and follow the previous studies [10][14] to quantize con-
tinuous frequency to the suitable pitch label from D2 to F#5
(from 73 to 740 Hz) with a step of 50 cents (1/2 semitone). In
addition to these 82 states, one more state of ”non-melody” is
included for those frames without pitch. There are 83 states in
total for our model output conditions and the training criteria
are cross-entropy and softmax function for generating prob-
ability of each state. In our experiments, a time-domain se-
quence of 140 ms (2240 sample points for 16 kHz sampling
frequency) was used as the input signal to predict the pitch
state of the center section of 20 ms. There was an overlap of
120 ms between consecutive input sequences.

3.2. Dataset and evaluation metrics

To train the proposed model and evaluate its performance,
we used five popular datasets in the research field of mu-
sic information retrieval, including MIR-1K [15], iKala [16],
MedleyDB [17], ADC2004, and MIREX05. The first two
datasets consist of vocal melody and the others consist of
mixed melody from vocal and instrumental sounds. Because
we only focused on extracting vocal melody, the clips with
vocal melody in MedleyDB dataset were picked based on la-

RPA RCA OA
CNN-960 75.84 78.94 77.46
CNN-64 47.45 51.01 60.70
Multi-CNN 77.79 81.05 78.34

Table 1. Three main performance scores of three compared
1-D CNN based systems using MIR-1K dataset.

beled styles of the clips [17]. Only 12 and 9 clips were re-
spectively selected from ADC2004 and MIREX05 datasets
based on the criteria in [11][14]. For training, we used 740
and 200 vocal clips from MIR-1k and iKala dataset, respec-
tively. The rest clips of the MIR-1K and iKala datasets were
used for evaluation. In our experiments, singing voice and
background music were mixed with equal energy, i.e., SNR
= 0 dB. All clips extracted from these datasets were resam-
pled to 16 kHz. The melody pitch tracks provided by these
datasets were also resampled to provide pitch values at cer-
tain instants using the interpolation method of the mir eval
toolkit released at ISMIR 2014 [18].

There are five standard metrics for melody extraction
evaluation, including the voicing recall rate (VR), the voic-
ing false alarm rate (VFA), raw pitch accuracy (RPA), raw
chroma accuracy (RCA) and overall accuracy (OA). To com-
pute the scores, we also used the library of mir eval.

4. RESULTS

The study showed applying the Viterbi algorithm as post-
processing does not improve performance of singing melody
extraction very much [10]. Therefore, in this study, no post-
processing module such as HMM [20], the Viterbi algorithm
[21] or the dynamic programming algorithm was used with
the proposed model to further smooth the estimated pitch con-
tour. The output of the proposed model was used to directly
compare with the ground truth for calculating the scores. All
scores shown in this section are in percent (%).

To show that providing multi-resolution information is
beneficial to melody extraction, we first evaluated the 1-D
CNN networks during pre-training. Only the MIR-1K dataset
was used in this evaluation, where 740 vocal clips were used
for training and the remaining 260 vocal clips were used for

VR VFA RPA RCA OA
Multi-CNN 88.89 20.33 77.79 81.05 78.34
Proposed model 88.27 16.65 79.27 81.67 80.46
No pre-training 88.55 18.05 78.95 81.59 79.83

Table 2. Performance scores of the proposed 2-stage model
initialized with pre-trained 1-D CNN kernels (’Proposed
model’) or random kernels (’No pre-training’). The ’Multi-
CNN’ system only contains the first stage of the proposed
model.
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VR VFA RPA RCA OA
Proposed 88.25 17.20 79.32 81.58 80.33
Hybrid [10] 80.97 14.74 70.30 73.88 74.67
MCDNN [14] 77.49 11.29 69.74 72.46 75.28
Melodia [19] 84.78 30.04 69.87 72.37 69.89

(a) MIR-1K
VR VFA RPA RCA OA

Proposed 89.47 16.15 81.17 82.41 82.05
Hybrid [10] 83.65 17.30 74.50 76.97 77.21
MCDNN [14] 77.25 9.46 71.23 73.89 77.59
Melodia [19] 81.97 26.76 72.64 74.77 72.83

(b) iKala
VR VFA RPA RCA OA

Proposed 64.63 18.51 54.27 59.80 58.59
Hybrid [10] 56.65 9.88 50.20 55.03 56.54
MCDNN [14] 50.19 10.15 45.38 49.28 58.37
Melodia [19] 81.47 17.24 71.72 74.86 73.48

(c) ADC2004
VR VFA RPA RCA OA

Proposed 87.15 12.65 79.66 80.84 82.31
Hybrid [10] 81.91 7.37 74.36 76.22 80.67
MCDNN [14] 75.75 5.99 70.10 71.60 78.36
Melodia [19] 87.44 24.60 78.46 79.73 77.40

(d) MIREX05
VR VFA RPA RCA OA

Proposed 86.19 43.33 65.61 71.54 60.04
Hybrid [10] 81.36 41.37 62.99 69.13 60.27
MCDNN [14] 77.16 37.10 60.09 66.06 61.84
Melodia [19] 82.56 46.44 57.37 67.35 54.99

(e) MedleyDB

Table 3. Performance scores of the proposed model and other
compared systems on five different test datasets. The pro-
posed model, the hybrid model [10], and the MCDNN [14]
were all trained using 740 and 200 clips of MIR-1K and iKala
datasets. The rest clips of MIR-1K and iKala were used for
the evaluation.

test. Note that there were no 2-D CNNs activated during
this evaluation. Table 1 shows the three main metrics of the
three compared system, CNN-960, CNN-64 and the Multi-
CNN. The CNN-960 and CNN-64 refer to the 1-D CNN
system with kernel lengths of 960 and 64, respectively, and
the Multi-CNN refers to the system with these 2 paralleled
1-D CNNs. Clearly, the CNN-64 performs the worst since
its short kernels couldn’t provide high resolution at the low
frequency region to resolve the fundamental frequency as
shown in Fig. 2(a). However, it does provide complementary
information to the CNN-960 system such as the harmonic
structure in higher frequency region. Therefore, paralleling
the two 1-D CNNs indeed improves the performance in terms
of these three main metrics.

The second evaluation was to see whether the 2-D CNN

can further provide complementary information from spectro-
temporal features of the sound for melody extraction. As in
the first evaluation, only the MIR-1K dataset was used. Table
2 demonstrates the 5 performance metrics of the three com-
pared systems. The Multi-CNN system contained 2 paralleled
1-D CNNs as shown in Table 1. The proposed model cas-
caded the Multi-CNN system with three 2-D CNNs, while the
Multi-CNN was initialized with properly ordered 1-D kernels
from pre-training. The ’No pre-training’ system refers to the
proposed model but was randomly initialized. From this ta-
ble, one can deduce that adding 2-D CNNs can further boost
the overall performance a bit. In addition, spectro-temporal
features extracted from the properly ordered spectrogram-like
graph are effective in distinguishing melody frames from non-
melody frames such that the proposed model has the lowest
VFA rate.

The last evaluation was to see the general performance
of the proposed model on different datasets. The 740 and
200 vocal clips from MIR-1k and iKala dataset were used
for training the proposed model and the rest clips of these
two datasets together with clips in ADC2004, MIREX05 and
MedleyDB datasets were used for test. The performance of
the proposed model for each test dataset are separately shown
in Table 3 with the performance of compared methods, in-
cluding the deep learning methods [10][14] and the expert
system Melodia [19]. The numbers in boldface are the best
scores in each of the 5 metrics. As shown in Table 3, the pro-
posed model performs the best in terms of the OA score on
MIR-1k, iKala, and MIREX05 datasets but not on ADC2004
and MedleyDB datasets. The reason is that the proposed
model was trained using singing melody such that it probably
couldnt detect instrumental melody very well. Interestingly,
Melodia gets the best OA score on ADC2004. It seems that
there are many opera songs in ADC2004 dataset such that
Melodia is better than other compared methods in detecting
pitch from fast-changing pitch motions such as the vibrato.
Nevertheless, these results clearly demonstrate the proposed
two-stage multi-resolution model produces remarkable re-
sults on singing melody extraction.

5. CONCLUSION

We built a two-stage multi-resolution CNN-based model
for melody extraction. The proposed end-to-end model
directly uses the time-domain polyphonic music signals
for melody extraction such that pre-processing and post-
processing are not needed. Two paralleled 1-D CNNs produce
two spectrogram-like graphs in the multi-resolution fashion.
Three sets of 2-D CNN kernels of different sizes encode 2-D
spectro-temporal patterns from different scales. Experiment
results show the proposed model does extract more infor-
mation in distinguishing melody such that it produces better
scores than most compared systems.
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