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ABSTRACT

Data-driven methods for melody extraction from polyphonic
music generally require large amounts of labeled data for
model training. However, musical data with annotations of
melody fundamental frequency (F0O) are rare and hard to ob-
tain. To overcome this limitation, in this paper we propose to
use melody MIDI files, which are more massively available,
as the sources of labels to train a deep neural network (DNN)
model for melody extraction. For each testing audio, the pitch
sequence estimated by DNN is comprised of note numbers
quantized at semitone level, and their resolution is relatively
low. Therefore, we further propose a salience-based method
to refine the pitch estimate of DNN to a higher resolution of
10 cents. Experimental results on three public datasets indi-
cate that our method outperforms four state-of-the-art melody
extraction methods in most cases.

Index Terms— Melody extraction, melody MIDI, pitch
resolution, deep neural network (DNN), salience-based method

1. INTRODUCTION

Melody extraction is the process of automatically obtaining a
sequence of fundamental frequency (FO) that represents the
pitch of the dominant melodic line of a polyphonic music
piece. This is an important task in music information retrieval
(MIR), with numerous potential applications such as query by
humming, cover song identification and singing voice separa-
tion [1].

Existing algorithms for automatic melody extraction can
be generally classified into three categories: salience-based
methods (e.g., [2, 3, 4, 5]), source separation-based methods
(e.g., [6, 7]) and data-driven methods (e.g., [8, 9, 10, 11, 12]).
In particular, with the popularity of deep learning, data-driven
methods based on deep neural networks are gaining more and
more attentions in the research of melody extraction. It is
well known that deep learning models generally require mas-
sive data for training. However, resources of precise annota-
tions of melody FO are rare, and thus the size of data avail-
able to train a melody classification model is usually small.
This is one of the major reasons that prevent the end-to-end
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models from achieving significantly better performance than
salience-based and source separation-based methods [9]. To
address this issue, different strategies such as data augmen-
tation [9], semi-automatic dataset generation [11], and NMF-
based salience representation [13] have been tried.

Data augmentation and dataset generation both aim at ob-
taining a larger and well-labeled dataset. Unlike them, in this
paper we propose a new solution to solve the small data size
problem faced when using deep learning for melody extrac-
tion. Specifically, our solution is based on the observation
that compared with the rare datasets annotated with precise
FO, melody MIDI files, which encode the note information
of each music recording’s melody, are more easily accessible.
By decoding these melody MIDI files, a sequence of pitch
values representing the melody of each corresponding music
recording can be obtained, and these pitch sequences can be
used as labels to train deep learning models of melody extrac-
tion.

Unfortunately, pitch values extracted from MIDI files are
quantized at semitone level (1 semitone = 100 cents) and the
resolution is relatively low. Moreover, pitch fluctuation within
each note is ignored. As a result, models trained using melody
MIDI files can only provide semitone-level pitch estimation
for each testing audio. However, in many MIR applications
such as singing voice separation, the precision of pitch es-
timation is essential for the overall performance [14], and
in other applications such as vocal and instrumental activity
recognition, using pitch fluctuation as a feature can signifi-
cantly boost the recognition accuracy [15]. In these cases, an
estimation of melody at a higher resolution is needed.

In spite of the low resolution, we argue that the semitone-
level pitch sequence can facilitate the calculation of melody
FO at the level of cents, as it provides a pitch trend to narrow
the search range of the target FO. To verify this argument, in
this paper we propose a two-stage method for melody extrac-
tion of polyphonic music. In the first stage, a DNN model
is trained using 22,000 polyphonic music recordings of vari-
ous genres and their corresponding melody MIDI files to clas-
sify the frames of each testing audio to obtain a sequence of
semitone-level pitch values (i.e., note numbers). In the second
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stage, the pitch sequence obtained is refined to 10-cent level
via a salience-based approach. Experiments on three public
datasets show that our method outperforms four state-of-the-
art algorithms significantly in most cases.

2. ALGORITHM DESCRIPTION

As demonstrated in Fig. 1, our algorithm contains two stages.
The first stage uses a DNN model trained on melody MIDI
files to extract a sequence of semitone-level pitch values from
each input audio. The second stage refines this pitch sequence
to a resolution of 10 cents based on a salience-based method.

DNN-based
pitch estimation

Salience-based

audio —| . .
pitch refinement

—> melody FO

Fig. 1. Framework of our algorithm.

2.1. Semitone-Level Pitch Estimation via DNN

In our previous work [16], we presented a DNN model trained
on 2,246 music recordings and their corresponding melody
MIDI files, which achieved significantly better performance
than the melodia method [4] in estimating the melody at semi-
tone level from polyphonic music. In the current study, a simi-
lar DNN model is utilized for semitone-level pitch estimation.

Our DNN model contains an input layer, three hidden lay-
ers and an output layer, classifying the melody of the input
audio frame by frame. The input layer takes as input the fea-
tures derived from Constant-Q transform (CQT) [17] of the
input audio. The CQT is calculated with a hop length of 23.2
ms, and for each frame the feature vector is formed by stack-
ing the current CQT spectrum and those of the 20 preceding
frames and the 20 succeeding frames. The three hidden lay-
ers are fully connected, each of which has 1,024 hidden units
and uses the rectified linear unit (ReLLU) for activation. The
output layer uses the softmax function to obtain the posterior
distribution of each pitch class against a total of 61 classes
(corresponding to frequencies from 55 Hz to 1.76 kHz and an
“unvoiced” class).

To train the DNN model, 22,000 music recordings and
their corresponding melody MIDI files are used (in contrast,
the model in [16] was trained on 2,246 songs). These record-
ings are all vocal-accompaniment-mixed popular songs and
each melody MIDI file is manually transcribed from the cor-
responding audio in house by music editors. During the train-
ing, the standard stochastic gradient descent (SGD) algorithm
is used to minimize the cross entropy loss function.

Given a testing music recording, the trained DNN model
produces a pitch sequence consisting of note numbers, which
is then smoothed by median filtering with a window size of
27. Each pitch value in the obtained pitch sequence, although
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with relatively low resolution, gives us an approximate es-
timation near which we can find the melody FO of the cor-
responding time frame with a higher resolution. The search
of a more-precise FO at each frame is performed by using a
salience-based method, as described in the next section.

2.2. Salience-Based Pitch Refinement

As concluded in [1], a majority of existing melody extraction
algorithms are salience-based. These algorithms first calcu-
late a salience function to measure the salience of each pos-
sible FO value over time, and then at each frame they exam-
ine all the peaks of this salience function to identify the peak
corresponding to the melody. Our pitch refinement approach
follows this procedure, except that we already have a pitch
estimate (i.e., the semitone-level pitch estimate given by the
DNN model) for each frame and we only have to examine the
peaks near this pitch estimate.

We adopt the method in [4] to construct a salience func-
tion for each music recording. First, short-time Fourier trans-
form (STFT) is applied with the window length and the hop
length set to 46.4 ms and 23.2 ms respectively. Instantaneous
frequency is then calculated to obtain a more accurate esti-
mate of the peak’s frequency and amplitude. Spectral peaks
are then selected by finding local maxima at each frame of the
magnitude spectrogram.

The salience function we use covers the frequency range
from 55 Hz to 1.76 kHz, quantized into 600 bins where each
bin contains 10 cents. For each frame, the salience value at
the bin b is calculated as the weighted sum of the spectral
peaks detected at this frame,

Np,

S() =)

h=11i=1

e(a;) x g(b, hy f;) x (ai)ﬁ, (D

where N}, is the number of harmonics considered, I is the
number of peaks found, a; and f; are the amplitude and
frequency of the ith peak respectively, e(a;) is a magnitude
threshold function, g(b, h, f;) is a weighting function, and
B is an amplitude compression parameter. For details of
calculating the salience function, please refer to [4].

After obtaining the salience function, we then utilize it to
refine our semitone-level pitch estimate. This is done frame
by frame. For the pitch value at frame ¢ in the sequence, we
first convert it from note number N, to Hertz f;, and assign it
to one of the 600 bins b; in the salience function, as follows,

f = 2WNe=69)/12 o 440, 2)

1200 x log,(f:/55)
10

For each frame, the bin b; gives an approximate estimation
where the target FO value with 10-cent resolution lies.




Then at each frame of the salience function we examine
the bin b; calculated from Eq. (3), as well as the K bins up-
wards and the K bins downwards. The bin b;*** with max-
imal salience value within the 2K + 1 bins is considered to
contain the refined melody FO and thus selected out. Finally,
b7*** is converted to a Hertz value as follows,

treﬁned _ Q(b?m,l)xlo/moo x 55, “4)

d
where f/e/"e

ered.

In this paper, the voicing decision is determined by the
outputs of DNN plus median filtering, we do not explore more
sophisticate decision method.

is the refined melody FO at the frame consid-

3. EXPERIMENTS

3.1. Datasets and Evaluation Metrics

The performance of our method was evaluated on three pub-
lic datasets: ADC2004', MIREX05' and MedleyDB [18].
The free music datasets of RWC (J-RWC) [19] was used as
validation dataset for parameter selection. Music recordings
in all these four datasets were sampled at 44.1 kHz. Since
the training set of our DNN model consists of mostly vocal-
accompaniment-mixed songs, only recordings with a lead
voice in these datasets were used for testing.

To measure the performance of melody extraction, five
metrics were calculated by using the mir_eval toolbox [20]:
voicing recall rate (VR), voicing false alarm rate (VFA), raw
pitch accuracy (RPA), raw chroma accuracy (RCA) and over-
all accuracy (OA). On each dataset considered, we calculated
the mean of each metric over all music recordings in the
dataset. Detailed descriptions of these metrics can be found
in [1]. In our experiments, we followed the settings in [4]
and considered an estimated pitch value to be correct when
its absolute difference with the ground truth is less than 50
cents.

3.2. Experimental Results
3.2.1. Parameter Selection

K is a parameter used for pitch refinement in Section 2.2. At
each frame of the salience function, it determines the range of
search for the target frequency bin (where the high-resolution
FO lies) given the frequency bin determined by Eq. (3). In this
experiment, we varied K from O to 40 with a step of 5, and
for each value of K we ran our method on the J-RWC dataset
to calculate the mean OA, mean RPA, and mean RCA. As
shown in Fig. 2, when K increases, each metric increases
monotonically with K first, reaches their maxima at K = 25,
and then declines slowly. This is as expected. When K < 25,
a wider search range brings larger chance to find the target

Uhttps://labrosa.ee.columbia.edu/projects/melody/

frequency bin. However, when K > 25, there may be too
many interfering options, which makes it hard to find the tar-
get frequency bin. As a result, we fixed the value of K to 25
in all the following experiments.
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Fig. 2. The effect of K on the performance of melody extrac-
tion on the J-RWC dataset.

3.2.2. The Effect of Pitch Refinement

We have shown in [16] that our proposed DNN model is pow-
erful in estimating the semitone-level pitch for musical audio.
In the proposed study, we conducted a new set of experiments
to verify the effectiveness of the other stage, i.e., pitch refine-
ment, of our melody extraction algorithm. These experiments
were carried out on the three public testing datasets, and for
each audio in these datasets, we first converted its pitch anno-
tations from Hertz to note numbers via

N =12 x log,(f/440) + 69, (5)

where f is the frequency value in Hertz, and IV is the cor-
responding note number, to obtain the ground-truth pitch se-
quence at the semitone level. This sequence was then fed to
our pitch refinement method to produce the final pitch estima-
tion.

By using the ground-truth semitone-level pitch as input
instead of the values given by our DNN model, we can elim-
inate the effect of the DNN model and focus on evaluating
the performance of pitch refinement. The mean RPA, RCA
and OA for each of the three datasets obtained from the above
strategy (denoted by semiGT + PR) are illustrated in Table
1. For comparison, we also give in this table the mean RPA,
RCA and OA of directly converting the ground-truth note
numbers to Hertz using Eq. (2) (denoted by semiGT). It can
be seen from Table 1 that on all the three datasets, the metrics
of semiGT are poor. This is obviously due to the precision
loss produced by Eq. (5). Fortunately, semiGT+PR can undo
the loss to a high extent, and the mean OA values are all above
91%. This clearly indicates the effectiveness of our salience-
based pitch refinement method.

Fig. 3 gives an example of pitch refinement for a short
segment in the ADC2004 dataset. The upper subplot shows
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in the salience function the semitone-level melody line esti-
mated by the DNN model, and the bottom subplot illustrates
the refined pitch sequence and the ground-truth melody line.
As we can see from this figure, our pitch refinement method
works well in recovering pitch fluctuation.

Table 1. The effect of the salience-based pitch refinement.

Datasets Algorithms RPA RCA OA
ADC2004 semiGT 46.9 469 553
(vocal) semiGT+PR 903 90.3 922
MIREXO05 semiGT 54.1 54.1 702
(vocal) semiGT+PR 86.3 864 91.5
MedleyDB semiGT 50.1 50.1 77.2
(vocal) semiGT+PR 89.6 89.6 96.5

melody from DNN

t (frame)

Fig. 3. Pitch refinement for a segment of “opera_male5 .wav”
in the ADC2004 dataset.

3.2.3. System Evaluation

To assess the performance of our system, two strategies of our
method were evaluated: 1) DNN, which directly converts the
semitone-level pitch estimate given by DNN to Hertz values
via Eq. (2); 2) DNN+PR, which represents our full system
consisting of DNN-based pitch estimation and salience-based
pitch refinement. For comparison, four state-of-art melody
extraction methods, i.e., melodia, MCDNN [9], DeepSalience
[11], and patch-CNN [12] were also evaluated. Please note
that MCDNN and DeepSalience were not evaluated on the
MedleyDB dataset, since this dataset was used in their train-
ing. All the comparative methods were run at their default
settings.

Our experimental results on ADC2004, MIREXO05 and
MedleyDB are listed in Table 2, 3 and 4 respectively. As we
can see from these tables, DNN+PR achieved significantly
higher RPA, RCA and OA than DNN in all cases. This indi-
cates again the effectiveness of our salience-based pitch re-
finement method. Compared with the four state-of-the-art
methods, DNN+PR achieved the best overall performance in
terms of OA on ADC2004 and MedleyDB. Moreover, it per-
formed better than all competitors in terms of RPA. Mea-
sured at RCA, DNN+RP won most of the competitions on

ADC2004 and MedleyDB, except that it achieved slightly
lower RCA than melodia on the MedleyDB dataset.

From Table 3 we can see that DNN+PR achieved a rela-
tively lower OA than melodia, DeepSalience and patch-CNN
on the MIREXO05 dataset. This is mainly due to the poor
performance of our DNN model in discriminating vocal and
nonvocal segments. As we can see in the table, DNN and
DNN+PR achieved a VFA of 42.4%, which is significantly
higher than melodia and DeepSalience.

Table 2. ADC2004 (vocal)

Algorithms OA RPA RCA VR VFA
melodia 739 71.8 748 81.6 12.0
MCDNN 73.1 758 783 889 412
DeepSalience 723 712 748 762 13.7
patch-CNN 723 748 76.1 90.5 42.1
DNN 620 62.1 634 873 28.6
DNN+PR 75.0 775 792 873 28.6
Table 3. MIREXO05 (vocal)
Algorithms OA RPA RCA VR VFA
melodia 76.6 767 779 870 227
MCDNN 684 763 774 870 49.0
DeepSalience 799 739 747 79.6 10.0
patch-CNN 733 829 835 96.0 439
DNN 563 555 561 892 424
DNN+PR 703 766 772 89.2 424
Table 4. MedleyDB (vocal)
Algorithms OA RPA RCA VR VFA
melodia 619 633 723 84.6 389
patch-CNN 61.1 589 63.7 75.8 404
DNN 56.6 456 506 79.1 359
DNN+PR 654 634 696 79.1 359

4. CONLUSION

In this paper, we present a two-stage method for melody
extraction from polyphonic music. The first stage performs
pitch estimation based on a DNN model trained using 22K
audio files and their corresponding melody MIDI files. Then
the estimated pitch values are refined in the second stage via
a salience-based pitch refinement method. Experiments on
three datasets show that the performance of our method is
significantly better or at least comparable to the four state-of-
the-art methods.

For future work, we are currently trying to improve the
performance of voicing detection for our algorithm, which is
the one of the main weaknesses of our proposed algorithm.
This can be done by, for example, joining audio features with
vocal characteristics.
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