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ABSTRACT

This paper presents a novel method for extracting the vo-
cal track from a musical mixture. The musical mixture con-
sists of a singing voice and a backing track which may com-
prise of various instruments. We use a convolutional network
with skip and residual connections as well as dilated convolu-
tions to estimate vocoder parameters, given the spectrogram
of an input mixture. The estimated parameters are then used
to synthesize the vocal track, without any interference from
the backing track. We evaluate our system, through objec-
tive metrics pertinent to audio quality and interference from
background sources, and via a comparative subjective evalua-
tion. We use open-source source separation systems based on
Non-negative Matrix Factorization (NMFs) and Deep Learn-
ing methods as benchmarks for our system and discuss future
applications for this particular algorithm.

Index Terms— Source separation, deep learning, convo-
lutional neural networks, vocoder.

1. INTRODUCTION

Audio source separation, the process of isolating individual
signals from a mixture of two or more audio signals, is a well
researched topic in the field of signal processing. For vocal
music, source separation can be defined as separating the lead
voice from the background signal, which may comprise of a
mix of various instruments. While an interesting topic in it-
self, the isolation of the singing voice from the backing track
also serves as an intermediary step for applications such as
singer identification, lyrics transcription, singing voice con-
version, karaoke remixing and other Music Information Re-
trieval applications .

Much research has been done for this task over the last
few decades, dominated primarily by statistical methods like
principal component analysis (PCA) [1], independent compo-
nent analysis (ICA) [2] and non-negative matrix factorization
(NMF) [3]. While effective, these methods are generally slow
and lead to artifacts and distortion in the estimation of the iso-
lated voice signal, which can be detrimental to tasks following
source separation.

In the last few years, methodologies based on Deep Learn-
ing [4, 5, 6] have raised the bar in terms of objective evalua-
tion metrics related to the separation task [7, 8] and on pro-

cessing time required. Many of these techniques focus on the
magnitude component of the spectrogram of the input mixture
signal and use the neural network to estimate Time Frequency
(TF) masks, which are applied to the mixture spectrogram to
isolate the desired signal. The waveform of the signal is syn-
thesized by either using the phase component of the mixture
spectrogram or by approximating the phase using the Griffin-
Lim algorithm. Some models have recently been proposed to
directly work on the waveform [7, 9].

Our research presented in this paper is inspired by some
of the earliest works in source separation, which try to re-
synthesize the voice signal from a mixture of the voice signal
and a noise/background signal [10, 11]. We propose a novel
approach for the paradigm of separation, wherein we esti-
mate vocal specific vocoder parameters from a mixture signal
that can be used to synthesize a version of the vocal signal
present in the mixture. We hypothesize that a neural network,
as a function approximator, can be trained to estimate rele-
vant features of the underlying voice signal from mixture sig-
nal. From these features, an approximation of the original
signal can be reconstructed. Since a vocal specific synthesis
approach is used, the estimated vocal track has no direct in-
terference from the backing track. In addition, we bypass the
phase synthesis/estimation problem that deters other systems
and the estimated vocoder features can be used directly for
applications such as lyrics extraction or voice transformation.

We evaluate our system using standard objective metrics
for source separation. However, we note that the output of the
system is a synthesis of the original vocal track and therefore
must be evaluated as such.

We also conducted a subjective listening test focusing on
three aspects of the system that we consider to be important;
the intelligibility of the synthesized signal, the isolation of
the vocal track from the backing track and the overall qual-
ity of the output. We compare our proposed system to two
other open source source separation systems; FASST [12, 13],
based on NMFs and the deep learning based DeepConvSep
[6]. The source code for our model is available online1, as
are sound examples2, showcasing the robustness of the model
with use on a real-world example.

1https://github.com/pc2752/ss_synthesis
2https://pc2752.github.io/singing_voice_sep/
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2. METHODOLOGY

2.1. WORLD Vocoder

The WORLD vocoder [14] is a speech vocoding system, com-
monly used for applications such as speech synthesis, manip-
ulation and analysis. The system decomposes a speech signal
into the fundamental frequency f0, harmonic spectral enve-
lope and aperiodicity envelope. It has been proved that these
parameters can be used to reconstruct a high quality synthesis
of speech signals, even after dimensionality reduction tech-
niques have been applied to the parameters [15].

2.2. Network Architecture

We use a convolutional neural network (CNN), inspired by
the WaveNet[16] architecture. WaveNet is an autoregres-
sive convolutional network based generative model, which
uses skip and residual connections with dilated causal con-
volutions to predict the next sample in a time series based
on a fixed number of previously predicted samples. A non-
autoregressive version of the WaveNet has also been used for
speech denoising [17] and our architecture is similar to this.
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Fig. 1: Overview of the convolutional block used in our
model.

In our case, we use the spectrogram of the mixture sig-
nal as input and the vocoder features as the target. We use
k blocks of convolutional layers with skip and residual con-
nections and gated dilated convolutions, as shown in Figure
1. To allow for fast inference, we decided to use a simpler
non-autoregressive version of the architecture, similar to the
one used by [17]. We implement dilated convolutions, with
a gated activation, as described in [16, 18]. However, since
we are not using autoregression, we do not enforce causality
in the convolutional layers, but instead use zero-padding to
ensure that the output of each layer has the same dimension-
ality in the time dimension as the previous layer. Like [15],
we treat the frequency bins of the spectrogram as different
channels, and thus each convolutional layer consists of one
dimension convolutions across the time dimension.

The input to our network is a segment of N consecutive
frames of the input spectrogram. This leads to an input of
dimensions N × D, where D is the number of bins in the
spectrogram. The first two layers of the network are 1×1 con-
volutional layers. This is followed by a series of gated stacks
of 2 × 1 dilated convolutions (denoted by ∗), with a sigmoid
(denoted by σ) non-linearity. A similar operation is carried
out with a tanh non-linearity and an element-wise multipli-
cation (denoted by �) is applied to the result of the two, as
shown in Equation 1

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x) (1)

Where W denotes a convolution filter and f and g repre-
sent filter and gates, respectively. x and z represent the input
and output of the layer. The dilation is increased by a factor
of 2 after each block, thus exponentially increasing the time
context covered through each consecutive stack. After the se-
ries of stacked convolutions, we apply two 1×1 convolutional
layers to ensure that the output of the network has the same
dimensionalty as the target vocoder features. Aside from the
final layer, which has the same filter channels as the target
dimension, each of the convolutional layers has C channels.

2.3. Loss function and Optimization technique

AnL1 loss, representing the absolute distance between the es-
timated parameters and the target parameters was used as the
loss function for the network. Optimization was done using
the Adam [19] optimizer.

3. EXPERIMENTS

3.1. Dataset and Pre-processing

The iKala dataset [1] was used for our experiments. This
dataset, contains 252, 30 second tracks of vocal and backing
track music as well as manually annotated MIDI-note pitch
annotations for each of the vocal tracks. A cappella vocal
tracks from multiple male and female singers are present in
this dataset without external effects such as reverb or com-
pression, thus making it ideal for our experiments as they
hinder the performance of the vocoder. We split the dataset
into a training set of 226 songs for training the model and a
test set of 26 songs for testing the output.

For these songs, the Short Time Fourier Transform
(STFT), WORLD parameters and fundamental frequency
ware calculated using Fourier transform of 1024 bins, a hop
time of 5ms and a sampling rate of 44.1 kHz. This led to a
spectrogram with D = 513 frequency bin and harmonic and
aperiodic vocoder features with 1024 bins per time frame.
Like [15], we reduce dimensionality of the harmonic com-
ponents using truncated frequency warping in the cepstral
domain [20] with an all-pole filter with warping coefficient
α = 0.45. This leads to 60 log Mel-Frequency Spectral
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Coefficients (MFSCs), representing the harmonic features.
For aperiodic features, we use WORLDs inherently bandwise
aperiodic analysis to reduce the dimensionality to 4.

All features, both in the input and the target were normal-
ized globally over the dataset to a range between 0 and 1 using
min-max normalization across the dataset.

3.2. Network Hyperparameters

For training, samples of N = 128 consecutive time frames
were randomly selected from the training set instead of se-
quentially feeding the network. We used minibatch training,
with a batch size of 30 batches per iteration. We used k = 5
blocks of gated convolutions and C = 128 filter channels for
each of the convolutional layers except the final layer. We
trained the network for 50k iterations.

.

4. RESULTS

We compare our proposed system, henceforth referred to as
sssynth, to two open source source separation systems, Deep-
ConvSep [6] and FASST [12, 13]. DeepConvSep is a source
separation system based on CNNs, which uses the network
to estimate time frequency masks. We chose this particular
system, because it has been trained on the iKala dataset, that
we are using for evaluation. The system was among the best
algorithms in the MIREX2016 source separation challenge,
which also used this dataset. It was also shown to be compet-
itive with state-of-the-art algorithms for separating multiple
sources from a musical mixture in the SiSEC 2016 challenge.
The FASST algorithm is an open source implementation of
an NMF based approach to source separation and has been
used as a benchmark for evaluating many source separation
algorithms over the years.

4.1. Objective Evaluation

We assess the quality of our system on three aspects; the in-
telligibility of the separated voice signal, the presence of un-
wanted sources in the signal and the auditory quality of the
synthesized signal. We use Mel Cepstral Distrotion (MCD)
as an objective measure for overall audio quality of the vocal
synthesis and the Source to Interferences Ratio (SIR) from
the BSS Eval3 [21] set of metrics for the amount of interfer-
ence from other source in the output. The evaluation using

3Other objective measures from the BSS Eval toolkit like SDR and SAR
can be found at https://pc2752.github.io/singing_voice_
sep/. We do not discuss them here as the results from these metrics do
not correlate with our subjective evaluation. We believe that this is primarily
because the output of our system is a re-synthesized version of the original
signal and thus these measures do not give a fair reflection of the quality of
the output for our case.

these two is shown in Figures 2 and 3 respectively. Intelligi-
bility, however, is a subjective matter that we assess through
a subjective listening test, along with the other two aspects.
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Fig. 2: The SIR metric from the BSS Eval toolkit for the
three systems to be compared. It can be observed that sssynth
achieves a higher score in this metric than the other two
systems. This is expected since the use of voice specific
vocoder features in our system prevents interference from
other sources in the output.
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Fig. 3: The Mel Cepstral Distortion (MCD), in dB, for the
three systems to be compared. While the upper range of the
MCD for the three algorithms is comparable, our system has
a better lower range and mean than the other two to which is
being compared.

4.2. Subjective Evaluation

For subjective evaluation, we presented the three evaluation
criterion to listeners in the form of an online AB preference
test, wherein the listener was asked to choose between two
corresponding samples, given a predefined criteria.

The three systems to be evaluated, sssynth, DeepConvSep
and FASST, were paired for the test, resulting in 3 pairs. Each
of the criteria, Intelligibility, Interference and Audio Quality
had 5 samples from each of the 3 pairs, resulting in 45 sepa-
rate questions. For questions related to Interference, the lis-
tener was presented with a reference mixture of the voice and
backing track and was asked to pick the system which had less
residual from the backing track present with the vocal track.
For audio quality related questions, the listener was presented
with a reference of the clean vocals and was asked to choose
the system which was closer to the reference in terms of audio
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quality. Finally, for the questions related to intelligibility, the
listener was asked to choose the system which was more eas-
ily intelligible, without a reference audio, which might have
caused a bias.

We used 5 second samples from songs in the test set, not
used for training the model. Since the song examples in the
iKala dataset are primarily in the Mandarin Chinese language,
the online listening test, was presented in the Mandarin Chi-
nese language4. 16 participants, fluent in the Mandarin Chi-
nese language participated in the survey and the results are
presented in Figures 4, 5 and 6.
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Fig. 4: Results of the subjective evaluation comparing sssynth
to DeepConvSep. It can be seen that while DeepConvSep is
preferred over our proposed model for the intelligibility and
audio quality criterion, sssynth is perceived to perform better
in terms of interference, by a majority of the people partici-
pating in the listening test.
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Fig. 5: Results of the subjective evaluation comparing sssynth
to FASST. While a clear preference towards sssynth is ob-
served for the intelligibility and interference criterion, the re-
sults are more evenly divided for the case of audio quality.
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Fig. 6: Results of the subjective evaluation comparing Deep-
ConvSep to FASST. The participants in the listening test seem
to show a clear preference towards DeepConvSep for the au-
dio quality and intelligibility citerion. However, for the case
of interference, no clear preference is observed.

4http://mtg.upf.edu/sourcesepeval/

It can be seen from Figure 2, that the presented system,
sssynth preforms better than DeepConvSep and FASST in
terms of the SIR metric. This metric is a measure of the
amount of interference from background sources in the sepa-
rated source and the observation agrees with the results of the
subjective evaluation shown in Figures 4 and 5. This is ex-
pected since the use of the vocal specific vocoder features lim-
its leakage from other sources into the estimated vocal track.

For audio quality, while the objective evaluation, shown in
Figure 3, seems to favour sssynth, the subjective listening test
(Figure 4) shows that the audio quality and the related aspect
of intelligibility is better for DeepConvSep. We believe that
the interference from the backing track in DeepConvSep leads
to higher energy in some mel bands thus leading to a higher
distortion factor. However, since the output of the DeepCon-
vSep algorithm is basically a synthesis of a masked version
of the mixture magnitude spectrogram, using the phase of the
mixture, the perceived audio quality is similar to that of the
original signal. Our model is based on the WORLD vocoder
parameters and thus avoids interference from background sig-
nals, leading to a lower distortion factor, However, since it a
re-synthesis of the voice signal, the perceived quality is not as
high as that one can achieve from the masking technique. The
relative lack of audio frames with consonant sounds, com-
pared to vowel sounds, also influences intelligibility. How-
ever, our model outperforms the FASST NMF based algo-
rithm in both the intelligibility and audio quality criterion.

5. CONCLUSIONS AND FUTURE WORK

We have proposed and evaluated a vocoder based voice ex-
traction algorithm for the case of musical signals. From
subjective and objective evaluation, we find that while the
vocoder does a good job of isolating the voice signal from
the background music, it falls behind state-of-the-art source
separation algorithms in terms of audio quality. Concur-
rently, the intelligibility of our system also leaves some room
for improvement. We are currently working on integrating
a WaveNet based vocoder system which can alleviate these
problems. Also, we will implement autoregression in our
model, which we believe will improve audio quality with
a compromise in inference time. We also plan to use the
vocoder features output by our system directly for other tasks
such as lyrics extraction, score alignment and voice transfor-
mation.
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