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ABSTRACT
Decomposition of an audio mixture into harmonic and percus-
sive components, namely harmonic/percussive source separation
(HPSS), is a useful pre-processing tool for many audio applications.
Popular approaches to HPSS exploit the distinctive source-specific
structures of power spectrograms. However, such approaches con-
sider only power spectrograms, and the phase remains intact for
resynthesizing the separated signals. In this paper, we propose
a phase-aware HPSS method based on the structure of the phase
of harmonic components. It is formulated as a convex optimiza-
tion problem in the time domain, which enables the simultaneous
treatment of both amplitude and phase. The numerical experiment
validates the effectiveness of the proposed method.

Index Terms— Music decomposition, sinusoidal model, instan-
taneous frequency, temporal smoothness, primal-dual splitting.

1. INTRODUCTION

Audio source separation, decomposing an audio mixture into each
source, is one of the fundamental tools for audio signal processing.
In particular, harmonic/percussive source separation (HPSS), which
decomposes an audio mixture into harmonic components (e.g., gui-
tar and piano) and percussive components (e.g., drums), has gained
much attention as a pre-processing tool for many music-information
retrieval (MIR) tasks including chord estimation [1] and tempo esti-
mation [2]. For instance, extracted percussive components are useful
cues for tempo estimation while the harmonic components are cru-
cial for chord estimation. HPSS is also helpful for audio remixing [3]
and time-scale modification [4].

One of the main approaches to HPSS is to take advantage of the
anisotropic smoothness of power spectrograms (i.e., power spectro-
grams of harmonic components are continuous in the time direction,
and those of percussive components are continuous in the frequency
direction as shown in Fig. 1) [5–7]. Based on the anisotropic smooth-
ness, HPSS was formulated as an optimization problem of minimiz-
ing the ℓ2 norm of the gradient of power spectrograms in [5]. Con-
sidering the same assumption, the method presented in [8] applies
the time-/frequency-directional median filtering (MF) to the power
spectrogram of the audio mixture, which was further developed into
the kernel additive model (KAM) [9–11]. Although these methods
have been successfully applied to HPSS, they have a limitation be-
cause the degraded phase from the audio mixture is still utilized for
resynthesizing the separated time domain signals.

Recent literature has shown the importance of phase in audio
source separation [12, 13] and audio denoising [14–17]. These stud-
ies utilize a model of phase for harmonic components, called sinu-
soidal model. This model claims that the phase evolution of har-
monic components can be predicted from their instantaneous fre-
quencies. More recently, this model was also applied to HPSS [18,
19]. In [18], the real-valued time-frequency mask for extracting har-
monic components was constructed based on the sinusoidal model.
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Fig. 1. Example of spectrograms of the harmonic and percussive
components. The harmonic component is continuous in the time
direction (left), and that of percussive components is continuous in
the frequency direction (right). The time-frame-wise sparse structure
is apparent in that of the percussive component.

However, the phase is not modified through time-frequency mask-
ing, and thus the degraded phase from the audio mixture is utilized
for resynthesizing back to the time-domain. On the other hand, [19]
utilizes the sinusoidal model for recovering the phase after applying
a time-frequency mask obtained by a deep neural network. However,
simultaneous modification of both amplitude and phase has not been
presented for HPSS.

In this paper, we propose a phase-aware HPSS method, which
treats both amplitude and phase simultaneously, through convex
optimization in the time domain. For harmonic components, the
proposed method assumes the time-directional smoothness of the
complex-valued spectrogram with the recently proposed phase mod-
ification [15]. This assumption can be interpreted as the unifica-
tion of the two conventional HPSS methodologies: the anisotropic
smoothness and sinusoidal model. For the percussive components,
the time-frame-wise sparsity is assumed on their complex-valued
spectrograms, which does not require any assumptions for its phase
structure. The effectiveness of the proposed method was confirmed
by the signal-to-distortion ratio (SDR).

2. PREVIOUS WORKS

In this section, we briefly revisit two approaches to HPSS, the
anisotropic smoothness and sinusoidal model, since the proposed
method combines these two approaches as described in Section 3.

2.1. HPSS based on anisotropic smoothness

One main approach to HPSS is the anisotropic smoothness of power
spectrograms. It assumes that a power spectrogram of harmonic
components H ∈ RK×T

+ and that of percussive components P ∈
RK×T

+ have the following relations:

Hω,τ ≈ Hω,τ±1, (1)
Pω,τ ≈ Pω±1,τ , (2)
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where ω = 1, . . . ,K and τ = 1, . . . , T are frequency and time
indices, respectively. Eq. (1) indicates that the power spectrogram
of the harmonic components varies slowly, while Eq. (2) claims that
of the percussive components is smooth in the frequency direction.
Based on these assumptions, the following optimization-based HPSS
method was proposed in [5]:

min
H,P

1

2σ2
h

∥Dτ (H)∥2Fro +
1

2σ2
p

∥Dω(P)∥2Fro

s.t. Hω,τ + Pω,τ = |Xω,τ |2γ , Hω,τ ≥ 0, Pω,τ ≥ 0

, (3)

where Dτ and Dω are the time and frequency-directional differ-
ences (i.e., discrete approximation of directional derivatives), σh and
σp are parameters to adjust smoothness of harmonic and percussive
spectrograms, and X ∈ CK×T is the complex-valued spectrogram
of the audio mixture to be separated. γ is a hyperparameter for range
compression (0 < γ ≤ 1), and it will be set to 1 in the rest of this
paper for simplicity. By minimizing the energy of directional deriva-
tives of the spectrograms, this model attempts to find spectrograms
which are smooth in each direction. In the experimental section, this
optimization-based method will be referred to as Ono’s.

While this optimization-based method is simple and effective,
the assumption of additivity of power spectrograms holds only ap-
proximately (it can be justified only by some statistical sense [20]).
Furthermore, it considers only power spectrograms, and thus the
phase information is ignored. Although some extensions based on
the anisotropic smoothness of power spectrograms have been pro-
posed [8–11], the degraded phase of the audio mixture is utilized
for resynthesizing the separated time domain signals, which often
causes audible artifacts as mentioned in [12].

2.2. HPSS based on sinusoidal model
Another recent approach to HPSS is based on the sinusoidal model.
Let the short-time Fourier transform (STFT) of a signal x ∈ RL be

F (x)ω,τ =

L−1∑
l=0

xl+aτ gl e
−2πjωbl/L, (4)

where g ∈ RL is a window, j =
√
−1, a and b are the time and fre-

quency shifting steps, and index overflow is treated by zero-padding.
Considering a sinusoid given by

sl = A e2πjfl/L+ϕ, (5)

where A ∈ R+, f ∈ [0, L/2), and ϕ ∈ [0, 2π) are the amplitude,
frequency, and initial phase, respectively. Its phase spectrogram ϕ
(with appropriate unwrapping) has the following relation:

ϕω,τ = ϕω,τ−1 + 2πavω,τ−1, (6)

where vω,τ is the instantaneous frequency at each time-frequency
bin. This sinusoidal model has been studied in phase vocoders [21],
and applied to audio signal processing tasks recently [13,16,17,22].

More recently, the sinusoidal model was also applied to HPSS
[18,19]. The phase-based masking (PM), which constructs the time-
frequency mask based on the relation among phases in successive
time frames, was presented in [18]. Although this method considers
phase information, the phase of the audio mixture is still utilized for
resynthesizing the separated time domain signals. In contrast, the
method presented in [19] utilizes the sinusoidal model for modify-
ing phase. Specifically, the time-frequency mask is estimated by a
deep neural network, and phases of separated signals are estimated
by the specific algorithm based on the sinusoidal model [13]. It sig-
nificantly depends on the time-frequency mask estimation, and phase
information is utilized just in the post-processing.
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Fig. 2. Illustration of a complex-valued spectrogram calculated by
(a) the usual STFT and (b) iPC-STFT.

3. PROPOSED HPSS METHOD

In this section, we propose a phase-aware HPSS method through
convex optimization where the phase-aware smoothness in the time
direction is assumed for harmonic components as a unification of
the aforementioned approaches: anisotropic smoothness and sinu-
soidal model. On the other hand, the time-frame-wise sparsity is
considered for the complex-valued spectrograms of percussive com-
ponents as a phase insensitive prior. The proposed method directly
separates the time-domain signal, which enables the simultaneous
modification of amplitude and phase.

At first, we review the phase-aware smoothness of harmonic sig-
nals introduced in the previous study [15]. Then, based upon that,
we formulate the proposed method and discuss the relation to the
conventional HPSS approaches reviewed in the previous section.

3.1. Time-directional smoothness of instantaneous phase cor-
rected complex-valued spectrogram
As shown in Eq. (6), the phase of a sinusoid has the relation among
successive time frames. It indicates the phase in the next frame is
predictable from the phase and instantaneous frequency in the cur-
rent frame. Based on the relation of phase, a model of a complex-
valued spectrogram of harmonic components was recently studied
for audio signal processing [14, 15]. Since the amplitude of the si-
nusoid is constant, its complex-valued spectrogram satisfies the fol-
lowing relationship:

F (x)ω,τ = F (x)ω,τ−1 e
2πjfa/L. (7)

Therefore, the complex-valued spectrogram of a sinusoid takes the
same value in each sub-band if its phase evolution is eliminated.

In order to eliminate such a phase evolution, instantaneous
phase corrected STFT (iPC-STFT) was proposed in [15]:

FiPC(x) = E⊙ F (x), (8)

where E is the instantaneous phase correction matrix defined by

Eω,τ =

τ−1∏
η=0

e−2πjvω,ηa/L, (9)

with Eω,0 = 1 for all ω, and ⊙ is the Hadamard product. This ma-
trix eliminates the phase evolution of a sinusoid as in Eq. (6). While
real and imaginary parts of the complex-valued spectrogram calcu-
lated by the usual STFT vary owing to the phase evolution, those of
iPC-STFT are constant in each sub-band thanks to the instantaneous
phase correction as illustrated in Fig. 2. Namely, the complex-valued
spectrogram of the sinusoid is smooth in each sub-band as

FiPC(s)ω,τ = FiPC(s)ω,τ−1. (10)
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Although this equation considers a single sinusoid, the time-
directional smoothness of the complex-valued spectrogram cal-
culated by iPC-STFT is also reasonable for harmonic signals con-
sisting of a sum of sinusoids. In [15], based on this characteristic of
iPC-STFT, a simple prior for harmonic signals was proposed, which
penalizes the time-derivative of the complex-valued spectrogram
calculated by iPC-STFT for enhancing harmonic components. For
more details about iPC-STFT, we refer readers to [15].

Note that the instantaneous frequency vω,τ is not known and
must be estimated in advance. It can be estimated by the direct time-
differential of phase as

vω,τ = bω − Im

[
F̃ (x)ω,τ

F (x)ω,τ

]
, (11)

where F̃ is the usual STFT whose window is the time-derivative of
the original window g, and Im[z] is the imaginary part of z [23].

3.2. Proposed optimization-based HPSS method
As described in the previous subsection, complex-valued spectro-
grams of harmonic components calculated by iPC-STFT have the
distinctive structure. Utilizing iPC-STFT, we propose a phase-aware
HPSS method through the following convex optimization:

min
xh,xp

1

2
∥W ⊙Dτ (Xh)∥2Fro + λ ∥Xp∥2,1

s.t. x = xh+ xp, Xh= FiPC(xh), Xp= F (xp)
, (12)

where xh, xp, and x are the time-domain signals of harmonic
components, percussive components, and the audio mixture, respec-
tively, λ > 0 is the hyperparameter which adjusts the amount of
harmonic and percussive components, and W ∈ RK×T

+ is a weight
constructed in advance. Note that the the instantaneous phase cor-
rection matrix E in iPC-STFT is calculated from the the audio
mixture, and thus iPC-STFT is treated as the fixed linear operator in
the proposed formulation.

The first term induces the time-directional smoothness of har-
monic components as an extension of Eq. (10). Since power spec-
trogram of harmonic components is smooth in the time-direction
as in Eq. (1), the time-directional smoothness of iPC-STFT spec-
trogram of general harmonic components is also reasonable. The
weight W, which adjusts the time-directional smoothness around
each time-frequency bin, is given by

Wω,τ = κ /max(κ, |X̃h|ω,τ ), (13)

where κ > 0 is a small number for adjusting the weight, and |X̃h|
is the normalized amplitude of pre-estimated harmonic components
which can be obtained by any existing method as [5, 8, 10]. This
weight takes a small value when the amplitude of harmonic compo-
nents are large, and thus harmonic components with large amplitude
are not penalized so much. Note that this additional weight was not
introduced in the previous study [15], and thus it is one of the con-
tributions of this paper.

The second term is the ℓ2,1-norm which induces group sparsity.
Here, the time-frame-wise sparsity is promoted by defining it as

∥X∥2,1 =

T∑
τ=1

( K∑
ω=1

|Xω,τ |2
)1

2

. (14)

This penalty function concentrates the energy into a few time frames
and enhances impulsive components. Such time-frame-wise sparsity
of percussive components can be seen in Fig. 1.

3.3. Relation to the conventional methods
The proposed method is related to the method based on anisotropic
smoothness [5] described in Section 2.1. While the first term in
Eq. (3) only considers the power spectrogram of harmonic compo-
nents, that of Eq. (12) treats both amplitude and phase through the
operation in the complex domain (note that the squared amplitude of
Xh corresponds to H). Thus, the proposed method given by Eq. (12)
can be interpreted as a phase-aware extension of Eq. (3). For the per-
cussive components, the proposed method assumes the time-frame-
wise sparsity, while Eq. (3) considered smoothness in the frequency
direction. Considering the frequency-directional smoothness for the
complex-valued spectrogram of percussive components may not be
easy. Thus, the proposed method utilizes ℓ2,1-norm, which is insen-
sitive to phase, instead of penalizing the frequency-derivative of the
complex-valued spectrogram.

As in Eq. (12), the proposed method directly treats the time-
domain signals, and its constraint claims that the separated compo-
nents satisfy the perfect reconstruction property in the time-domain
as in a recent audio source separation method [24]. Some of the con-
ventional HPSS methods (e.g., anisotropic smoothness based meth-
ods [5, 7] and non-negative matrix factorization based methods [25,
26]) assume additivity of power spectrograms, but it requires some
statistical assumptions as discussed in [20]. In contrast, the con-
straint in the proposed method (additivity in the time-domain) is al-
ways justified. To the best of our knowledge, this is the first study
applying the perfect reconstruction constraint to the separated time
domain signals in HPSS.

3.4. Primal-dual splitting algorithm for proposed HPSS method
In order to solve the convex optimization problem given by Eq. (12),
in this paper, a primal-dual splitting algorithm [27] is adopted be-
cause it can handle some priors tied with linear operators with a
constraint. A primal-dual splitting (PDS) method [27] is one of the
convex optimization algorithms for solving the following problem:1

min
x

Θ(x) + Υ1

(
L1(x)

)
+Υ2

(
L2(x)

)
, (15)

where Θ and Υm are proper lower-semicontinuous convex func-
tions, and Lm is a linear operator (m ∈ {1, 2}). A PDS algorithm
solves this problem by iterating the following procedure:

x̃ = proxµ1Θ

(
x− µ1

(
L ∗

1 (y
[n]
1 ) + L ∗

2 (y
[n]
2 )

))
, (16)

zm = y[n]
m + L ∗

m(2x̃− x[n]) (∀m), (17)

ỹm = zm − µ2 prox1/µ2Υm
(zm/µ2) (∀m), (18)

(x[n+1],y[n+1]
m ) = α(x̃, ỹm) + (1− α)(x[n],y[n]

m ) (∀m), (19)

where L ∗
m is the adjoint operator of Lm, n is the iteration index,

µ1 > 0, µ2 > 0, and 0 < α < 2. The important feature of this
procedure is that the minimization of each function is handled sepa-
rately through the proximity operator [28]:

proxρΨ(Y) = argmin
X

Ψ(X) +
1

2ρ
∥Y −X∥2Fro . (20)

To apply this PDS algorithm to the proposed method in Eq. (12),
it should be reformulated to the following equivalent problem:

min
xh,xp

ιx(xh,xp) +
1

2
∥Lh(xh)∥2Fro + λ ∥F (xp)∥2,1 , (21)

1This primal-dual splitting algorithm is a simplified version chosen for
easier explanation of the proposed algorithm. We refer readers to [27] for the
general form which can handle wider range of problems.
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Algorithm 1 Proposed HPSS algorithm solving Eq. (21)

Input: x, x[0]
h , x[0]

p , Y[0]
h , Y[0]

p , λ, µ1, µ2, α
Output: x[n+1]

h , x[n+1]
p

for n = 1, 2, . . . do
(x̃h, x̃p) = Px

(
x
[n]
h − µ1L

∗
h (Y

[n]
h ), x

[n]
p − µ1F

∗(Y
[n]
p )

)
zh = y

[n]
h + Lh(2x̃h − x

[n]
h )

zp = y
[n]
p + F (2x̃p − x

[n]
p )

ỹh = zh − µ2 prox(1/µ2)∥·∥2Fro
(zh/µ2)

ỹp = zp − λµ2 prox(1/λµ2)∥·∥2,1(zp/λµ2)

(x
[n+1]
h,p ,y

[n+1]
h,p ) = α(x̃h,p, ỹh,p) + (1− α)(x

[n]
h,p,y

[n]
h,p)

end for

where Lh(·) = W ⊙ Dτ

(
FiPC(·)

)
, and ιx(·, ·) is the indicator

function of the perfect reconstruction constraint given by

ιx(xh,xp) =

{
0 (x = xh + xp)
∞ (otherwise) . (22)

Applying the PDS algorithm to the reformulated problem in Eq. (21)
yields Algorithm 1, where the choice of µ1 and µ2 can be automated
as in [27], and the proximity operators involved in the algorithm can
be analytically calculated as follows [28, 29]:

Px(xh,xp) = (xh,xp) + (x− xh − xp)/2, (23)

proxρ∥·∥2Fro
(X) = X/(1 + ρ), (24)

(proxρ∥·∥2,1(X))τ = (1− ρ/∥Xτ∥2)+ Xτ , (25)

where Xτ is the K-dimensional vector at the τ th time frame. We
stress that this algorithm does not require the inverse of linear oper-
ators, Lh and F , but only require applying them and their adjoint,
and thus we can avoid the huge computation for calculating their
inverse.

4. NUMERICAL EXPERIMENT

The proposed method was applied to separations of 10 audio tracks2

which was presented in the previous study [18]. The sampling rate
was 44100 Hz, and STFT was calculated by the canonical tight win-
dow of the Hann window of 4096 samples with 1024 sample shift-
ing. The proposed method was compared with four conventional
methods: Ono’s [5], MF [8], KAM [10], and PM [18]. In each
method, the hyperparameters were set to suggested values in each
original paper. Separation performance was evaluated by the aver-
age of BSS Eval measures: SDR, signal-to-interference ratio (SIR),
signal-to-artifacts ratio (SAR) [30].

For the proposed method, the amplitude spectrogram of har-
monic components should be estimated in advance for calculating
the weight W. Here we utilized MF as a simple and fast HPSS
method for prior estimation of the harmonic components. Although
MF does not treat phase, it is modified through the proposed method.
For calculating iPC-STFT, the instantaneous frequency of the har-
monic components is also required. Since its oracle information is
not available, we calculated it from the audio mixture (Prop-mix). In
order to evaluate the potential of the proposed method, iPC-STFT
with the instantaneous frequency calculated from the oracle har-
monic components was also compared (Prop-ora). In both cases,

2It can be downloaded from https://www.idmt.fraunhofer.
de/en/business_units/m2d/smt/phase_based_harmonic_
percussive_separation.html

Table 1. Mean scores over 10 audio tracks. The average (Ave.)
of the harmonic (Har.) and percussive (Per.) components are also
presented. Bold font indicates the highest (excluding Prop-ora).

Ono’s[5] MF[8] KAM[10] PM[18] Prop-mix Prop-ora

Har.
SDR 5.8 8.6 4.9 −8.6 9.3 10.3
SIR 11.2 15.1 23.1 6.1 12.3 13.8
SAR 7.6 10.2 5.1 −7.5 15.4 15.4

Per.
SDR −8.1 −4.2 −4.7 −12.1 −3.8 −2.7
SIR −2.8 −1.3 −2.3 −3.2 1.7 2.8
SAR −1.9 3.5 4.2 −6.7 1.6 2.6

Ave.
SDR −1.1 2.0 0.1 −10.4 2.8 3.8
SIR 4.2 6.9 10.4 1.5 7.0 8.3
SAR 2.8 6.9 4.6 −7.1 8.5 9.0

the instantaneous frequency was calculated by Eq. (11). The hyper-
parameters, λ and κ, were experimentally determined to be 0.5 and
0.001. Algorithm 1 was iterated 100 times with µ1 = 1, µ2 = 0.25,
and α = 0.5. While an arbitrary choice is allowable, MF was uti-
lized for estimating the initial value.

4.1. Results
The experimental results are summarized in Table 1. MF outper-
formed other conventional methods in terms of SDR, which served
as the initial value of the proposed method. Since the time-frequency
mask was estimated solely from the phase information, PM resulted
in the lowest performance. In contrast, the proposed method, which
simultaneously treats both amplitude and phase, outperformed con-
ventional methods in terms of SDR. We observed that KAM reduced
much components, which significantly improved SIR of harmonic
components but induced low SDR and SAR. As a result of taking
phase into account, the proposed method achieved higher scores than
Ono’s which is the non phase-aware version of the proposed method
as discussed in Section 3.3.

Comparing Prop-ora with Prop-mix, we confirmed that the ac-
curate estimation of the instantaneous frequency of harmonic com-
ponents can improve the performance of the proposed method. This
is because the first term in Eq. (12) takes a smaller value for har-
monic components and penalizes percussive components more by
utilizing the appropriate instantaneous frequency. The instantaneous
frequency estimation given by Eq. (11) is one of the simplest meth-
ods. More specific methods for the accurate estimation of the instan-
taneous frequency of harmonic components should be considered,
which is a future work.

5. CONCLUSION

In this paper, a phase-aware HPSS method through convex optimiza-
tion was proposed. Based on two HPSS approaches (anisotropic
smoothness and sinusoidal model), the proposed method assumes
the smoothness of the complex-valued spectrogram of harmonic
components calculated by iPC-STFT in the time direction. On the
other hand, the time-frame-wise sparsity of percussive spectrograms
was considered as a phase insensitive prior. Furthermore, the pro-
posed method considers the perfect reconstruction constraint in the
time domain instead of power spectrograms. Through the exper-
iment, the effectiveness of the proposed method was validated in
terms of SDR. The experimental results indicated the accurate esti-
mation of the instantaneous frequency of harmonic components can
improve the performance of the proposed method, which is included
in our future works.
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