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ABSTRACT

The headphones market is expanding and new applications based on
active noise control (ANC) are emerging. In this contribution, we
derive a fixed feed-forward FIR filter for ANC headphones based
on a minimum mean-square error (MMSE) cost function that real-
izes user-defined active equalization and attenuation of the ambient
sound. By analyzing the limit of this solution with respect to active
attenuation, we derive a generalized solution that allows the user to
influence the equalization even for high attenuation. We investigate
the importance of a priori information and runtime measurements of
the acoustic transfer functions, and show how this can be utilized to
further increase the accuracy of the equalization.

Index Terms— Active noise control, causal Wiener filter, acous-
tic equalization

1. INTRODUCTION

The continuously rising level of environmental noise drives the need
for countermeasures, which can hardly be satisfied by passive insu-
lation. The broadly investigated technology of active noise control
(ANC) is able to complement passive insulation to a great effect.
Therefore, and due to new generations of audio processors, ANC
headphones are experiencing a commercial success. Although the
new processor technology is potent, the housing and power con-
straints of headphones are yet too demanding for feasible adaptive
solutions in ANC headphones [1, 2].

The minimum mean-square error (MMSE) solution to fixed feed-
forward FIR filters for ANC is given by the well known causal Wiener
filter [3–5]. Feed-forward ANC systems benefit from guaranteed
robustness and allow for attenuation of non-deterministic ambient
sound. On the other hand, in order to design a robust feedback
ANC system the variance of the secondary path needs to be consid-
ered [6, 7]. Furthermore, feedback ANC is only feasible for tonal
noise and possibly in scenarios where no reference sensor is avail-
able. In this contribution, we modify the MMSE cost function to
obtain an ANC system that allows for user-defined active equalization
and attenuation of ambient sound. The concept of active acoustic
equalization is used, e.g., in the field of occlusion reduction [8] or
sound field control [9–11] with the target of achieving an acoustically
transparent headphone or a flat magnitude response at the listening
position with respect to the source. We investigate challenges that
arise with the design of non-flat target transfer functions. In order to
illustrate the flexibility of this approach, we previously designed a
three-band parametric equalizer [12] with a variable attenuation as
our target transfer function. Note, that the methods derived in this
paper are optimal for any arbitrary target function. We further address
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Fig. 1. Headphone topology with hardware components separated
into an analog model ( ), a fast digital filter ( ), and Bluetooth
(BT) communication ( ).

challenges due to variation in the acoustic transfer functions of the
ANC headphone [13] and show how a priori information and runtime
measurements can be used to increase the accuracy of the overall
transfer function.

After a brief overview of the hardware setup, we derive the
optimal equalization filter in Sec. 3. In Sec. 4 we show how the
group delay of the secondary path should be considered in the target
function and finally investigate the variance of the acoustic transfer
functions in Sec. 5.

2. SYSTEM OVERVIEW

In the following, t and n denote the continuous and discrete time
index. The arguments z and s refer to the z and Laplace transforms.
Furthermore, bold uppercase A denotes a matrix and bold lowercase
a denotes a vector. We define the z transform of a finite signal
a = [a0, a1, . . . , aN−1]T of length N as A(z) = Z {a}, where the
subscript on an is a compact form of the time index, i.e., an = a(n).

Fig. 1 shows a hardware-related topology of ANC headphones.
The analog model contains the reference microphone Mref , which
records the outer disturbance signal x(t), the error microphone Merr,
which records the error signal e(t), and a loudspeaker, which plays
back the compensation signal ŷ(n) and the entertainment or mea-
surement signal m(n). The primary acoustic path Pa(s) describes
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the transfer function between Mref and Merr, whereas the secondary
acoustic path Sa(s) describes the transfer function between the loud-
speaker and Merr. The analog front-end is connected to the digital
back-end through analog-to-digital converters (ADCs) and a digital-
to-analog converter (DAC). The compensation signal ŷ(n) is gen-
erated by filtering the discrete-time reference signal x(n) with the
equalization filter Ŵ (z). The filter coefficients of the equalization
filter Ŵ (z) can be calculated on an external device, such as a smart
phone, and transmitted via Bluetooth. Note that Merr is not required
to perform the equalization, but is essential for the design process and
could be used to calibrate the secondary path at runtime. The signal
m(n) is optional and could be a measurement signal for identifying
S(s) or an entertainment signal. In the following, we assume that
m(n) = 0. As we design a digital filter, we use discrete-time or
z-domain notation for signals and impulse responses. Furthermore,
P (z) and S(z) comprise the characteristics of the ADCs and the
DAC, as well as the microphones and loudspeaker.

3. EQUALIZATION FILTER DESIGN

In this section, we derive the optimal time-invariant feed-forward
equalization filter Ŵ (z) using a minimum mean-square error
(MMSE) cost function. The solution is similar to the solution
for pure ANC [3]. The objective is to design Ŵ (z) so that the overall
transfer function Ĥ(z) of the ANC system matches an arbitrary
target function H(z):

P (z)− Ŵ (z)S(z) = Ĥ(z)
!
= H(z) (1)

The straightforward solution

W o(z) =
P (z)−H(z)

S(z)
(2)

unfortunately, is not feasible since S(z) is non-minimum-phase and
therefore W o(z) is anti-causal. In the following, we derive a causal
approximation ŵ = [ŵ0, ŵ1, . . . , ŵL−1]T ∈ RL of W o(z) in the
time-domain. We assume that all filters are time-invariant.

3.1. Wide-Band Solution

In this subsection, we derive the wide-band solution for the fixed
feed-forward equalization filter ŵ. We need to zero-pad the primary
path vector p and the target function vector h

p = [p0, p1, . . . , pL−1, 0, . . . , 0]T ∈ R2L−1 (3a)

h = [h0, h1, . . . , hL−1, 0, . . . , 0]T ∈ R2L−1 (3b)

so that their lengths are equal to the convolution product of ŵ and
s = [s0, s1, . . . , sL−1]T ∈ RL. To write the cost function in matrix
notation, we define the convolution matrix

S =



s0 0 . . . 0

s1 s0
. . .

...
...

...
. . . 0

sL−1 sL−2 . . . s0
0 sL−1 . . . s1
...

. . .
. . .

...
0 . . . 0 sL−1


∈ R2L−1×L (4)

of the secondary path s so that

Sŵ =
[
b̂0, b̂1, . . . , b̂2L−1

]T
∈ R2L−1, (5a)

b̂n =

L−1∑
i=0

ŵisn−i. (5b)

We now formulate the MMSE cost function with ĥ = p− Sŵ and
the differential vector b = p− h as

Cwb =
∥∥∥ĥ− h

∥∥∥2 (6a)

= bTb− 2bTSŵ + ŵTSTSŵ. (6b)

By determining the minimum of Cwb as a function of ŵ

∂Cwb

∂ŵ
= −2STb + 2STSŵ

!
= 0, (7)

we find the optimal equalization filter

ŵ =
(
STS

)−1

STb. (8)

This wide-band solution is a causal approximation of the optimal
anti-causal equalization filter from (2). The matrix Ψss = STS
is invertible, as it corresponds to the auto-correlation matrix of the
secondary path s and is concentrated around its main diagonal.

3.2. Generalized Wide-Band Solution

The wide-band solution in (8) is implicitly capable of adjusting to
target functions that comprise a scalar gain g. We can, for example,
express the target function

h = gh̃ (9)

as the product of g and an arbitrary filter function h̃. Writing ĥ
using (8), (9), and the identity matrix I gives

ĥ = p− Sŵ (10a)

=

[
I − S

(
STS

)−1

ST

]
p + gS

(
STS

)−1

STh̃ (10b)

and we observe that for small g the overall transfer function ĥ is
independent of h̃, which is counter-intuitive from a user point of
view, as the user loses control over the shape of Ĥ(z).

In the following, we set up a generalized cost function and ana-
lyze its limit for high attenuation g → 0. We observe that the limit of
the generalized cost function corresponds to the minimization prob-
lem of a linear predictor, and utilize the property that the error signal
is as flat as possible if the predictive filter is optimal. Finally, we
find an artificial excitation signal x̂ that we consider for design of the
equalization filter ŵ to preserve the shape of H(z) in Ĥ(z), even
for high attenuation. The resulting method is conceptually similar
to a spectral weighting of an excitation signal for impulse response
measurements [14].

In contrast to the impulse-response-based cost function (6) we
now strive for a signal-based cost function. For now, we define an ar-
bitrary excitation signal x̂ ∈ RM of finite length M . Its convolution
matrix

X̂ ∈ R(M+2L−2)×(2L−1) (11)
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Fig. 2. Magnitude of spectrum Ĥ(z) for ŵ based on (6) and (13)
with different gains g for H(z) and H̃(z) ( ) as a reference.

is constructed similarly to (4) so that

X̂p =
[
d̂0, d̂1, . . . , d̂M+L−1, 0, . . . , 0

]T
∈ RM+2L−2, (12a)

d̂n =

L−1∑
i=0

pix̂n−i. (12b)

The generalized cost function is defined as

C =
∥∥∥X̂ (

ĥ− h
)∥∥∥2 . (13)

Note that e = X̂ĥ corresponds to the output of the ANC system
when x̂ is its input, and ẽ = X̂h corresponds to the target output.

In the following, we show how to determine x̂ so that the overall
transfer function Ĥ(z) matches the shape of the target functionH(z).
For high attenuation g → 0 we obtain with (9) and (13)

C ≈
∥∥∥X̂ĥ

∥∥∥2 , for g → 0, (14)

which is minimal if the power of the system output e is minimal.
Since a feed-forward ANC system is a linear predictor, the power
of e is minimal if its magnitude spectrum is as flat as possible [15].
Assuming that the system output is approximately flat and scaled with
a real-valued γ,

|E(z)| =
∣∣∣X̂(z)Ĥ(z)

∣∣∣ ≈ γ (15)

and with Ĥ(z)
!
= H(z) we choose

x̂ = Z−1

{
γ

|H(z)|

}
(16)

so that ĥ minimizes e while considering the shape of h.
The solution to minimizing the generalized cost (13) function for

any gain g is given by

ŵ =
(
STΨx̂x̂S

)−1

STΨx̂x̂b, (17)

where Ψx̂x̂ = X̂
T
X̂ denotes the auto-correlation matrix of x̂. If

x̂ is uncorrelated, Ψx̂x̂ corresponds to the identity matrix and the
generalized solution (17) is equal to the wide-band solution (8). As
Ψx̂x̂ appears in the nominator and denominator of (17), the choice of
x̂ is scale invariant, so we can choose γ = 1 in (16).
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Fig. 3. Magnitude of spectrum Ĥ(z) for different values of additional
group delay δh applied to the target function H(z) ( ).

Fig. 2 illustrates how the generalized solution with an appropriate
choice of x̂ influences the overall transfer function. We see that both
methods behave similarly for g = −10 dB and that the wide-band
solution no longer shapes Ĥ(z) accordingly for g = −60 dB. Since
the wide-band solution is optimal, it follows that it is not possible to
exceed its attenuation at all frequencies. We observed that increased
attenuation at certain frequencies requires a reduced attenuation at
other frequencies. This is similar to the water-bed effect, which is
associated with Bode’s integral for feedback control [16].

4. GROUP DELAY COMPENSATION

The secondary path is non-minimum-phase, and depending on its
group delay, the first few filter taps of b can not be approximated
by Sŵ [8]. To illustrate the influence of an additional group delay
δs > 0, we assume that S(z) can be factored as

S(z) = z−δsSm(z), (18)

with a causal and invertible minimum-phase filter Sm(z). We in-
sert (18) in (2) to obtain

W (z) =
P (z)−H(z)

z−δsSm(z)
(19a)

= zδs
P (z)

Sm(z)
− zδs H(z)

Sm(z)
. (19b)

Although the quotient is determinable because Sm(z) is invertible,
we lose information by shifting the filter into the anti-causal plane by
δs samples. Adding a group delay to a minimum-phase target function
H(z) = z−δhHm(z) and with δh = δs we partially compensate the
group delay of S(z) and obtain

W (z) = zδs
P (z)

Sm(z)
− Hm(z)

Sm(z)
. (20)

Fig. 3 shows how δh affects the overall transfer function Ĥ(z).
Note that P (z) and S(z) used for generating Fig. 3 are calculated
from measured data. Therefore, S(z) only approximately fulfills the
model assumption (18), as its group delay is frequency dependent. We
observe that the overall transfer function Ĥ(z) is more accurate for
larger δh and that it converges if δh exceeds the maximum group delay
of S(z). As the choice of the target function H(z) is arbitrary, the
results from this section can and should be considered in combination
with the solutions from Sec. 3. For the rest of this paper we choose
δh = 8, which in fact is also the case for Fig. 2.
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5. VARIATIONS IN ACOUSTIC TRANSFER FUNCTIONS

From the previous sections, we know that knowledge of the electro-
acoustic transfer functions P (z) and S(z) is essential for designing
the equalization filter ŵ. However, we can not assume perfect knowl-
edge of the transfer functions.

In this section, we discuss how a priori information and runtime
measurements of the acoustic paths can affect the performance of the
ANC system. This concept is usually associated with the design of a
feedback controller for ANC where variance of the secondary path
needs to be considered to ensure robustness [6], [7]. We consider a
multitude of J measurements pj of the primary path and sj of the
secondary path with j = 0, . . . , J − 1, that are performed prior to
the design of ŵ. These measurements deviate from the average paths

p =
1

J

J−1∑
j=0

pj , s =
1

J

J−1∑
j=0

sj (21)

by

pj = p + ∆pj (22a)
sj = s + ∆sj . (22b)

We assume that each pair of pj and sj is measured simultaneously.
To find the equalization filter ŵ that yields the optimal averaged per-
formance for a multitude of J previously measured acoustic paths, we
modify the cost function (13) which, with ĥj = pj − Sjŵ, results
in

C =

J−1∑
j=0

∥∥∥X̂ (
ĥj − h

)∥∥∥2 . (23)

The convolution matrix X̂ is constructed with x̂ chosen according
to (16). We obtain the optimal equalization filter with bj = pj − h
as

ŵ (p, s) =

(
J−1∑
j=0

ST
j Ψx̂x̂Sj

)−1 J−1∑
j=0

ST
j Ψx̂x̂bj . (24)

For a statistically significant number of J a priori data, the equaliza-
tion filter from (24) should yield near optimal performance, even for
a test set with K � J measurements.

To further increase the performance, we might measure the actual
transfer functions p and s at runtime. A runtime measurement of s
is feasible, as we can play back a measurement signal m(n) via the
internal loudspeaker of the headphone, as Fig. 1 illustrates. Further-
more, the ANC system increases the SNR at the error microphone
since it decreases the energy of the inner disturbance signal d(n). On
the other hand, acquiring p at runtime is error-prone, as we either
have no influence on the measurement signal and SNR or require
an external playback device and a quiet environment. Therefore, we
only evaluate the case in which we have perfect knowledge of s. For
now, we assume that p and s are independent. With a measurement
of the secondary path s, we can simplify (24) to

ŵ (p, s) =
(
STΨx̂x̂S

)−1

STΨx̂x̂ (p− h) . (25)

In order to evaluate the effect of acoustic path knowledge on the
performance, we measured the overall transfer function Ĥ for J = 12
participants in a studio box using a Neumann KH 120 speaker in a
lateral position. We used a modified Bose QC20 headphone as an
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Fig. 4. Tubes of 100% ( ), 80% ( ) and 50% ( ) confi-
dence with median ( ) of Ĥ(z) and target function H(z) ( ).

electro-acoustic front-end. The digital back-end was provided by a
dSPACE real-time system. The gain is set to g = −10 dB and the
delay was chose as δh = 8. We extended the target function H(z) by
an additional high-cut filter at 8 kHz since the uncertainties above that
frequency range prohibit good performance under real test conditions.

Fig. 4 shows tubes of confidence of the measured overall transfer
functions Ĥ(z) for equalization filters based on different knowledge
of the primary path p and secondary path s. In the first case, neither
the actual p nor s are known and the control filter is based on the
average according to (24). In the second case, the secondary path
is measured by playing back an exponential sweep via the internal
loudspeaker. The equalization filter is calculated according to (25).
In the third case, the secondary path was measured as previously
described and the primary path was measured by playing back an
exponential sweep over an external loudspeaker. The equalization
filter is calculated according to (17). The benefit of knowing the
actual transfer paths is apparent. For the second case, we clearly see
improvements in comparison to the first case at around 200 Hz, as
well as a better alignment of the notch filter at 3.2 kHz. The deviation
between 3.6 kHz and 4.7 kHz is due to a resonance of the loudspeaker
and can only be compensated with perfect knowledge of p and s, as
seen for the third case.

6. CONCLUSION

In this contribution, we proposed different MMSE-based solutions for
designing a fixed feed-forward FIR filter for an ANC headphone that
allows for user-defined equalization and attenuation of ambient sound.
We improved on the straightforward solution by analyzing the limit
of its overall transfer function with respect to the active attenuation.
Furthermore, we considered the group delay of the secondary path as
well as a priori information and measurements of the acoustic transfer
functions to increase the accuracy of the overall transfer function with
respect to the target function. The observations and numerical results
are based on actual measurements.

983



7. REFERENCES

[1] J. Fabry, S. Liebich, P. Vary, and P. Jax, “Active noise control
with reduced-complexity Kalman filter,” in 16th International
Workshop on Acoustic Signal Enhancement (IWAENC). IEEE,
Sep. 2018.

[2] M. Zhang, H. Lan, and W. Ser, “Cross-updated active noise
control system with online secondary path modeling,” IEEE
Trans. Speech Audio Process., vol. 9, no. 5, pp. 598–602, Jul.
2001.

[3] S. M. Kuo and D. R. Morgan, Active Noise Control Systems:
Algorithms and DSP Implementations. Hoboken: Wiley, 1996.

[4] S. Elliott, Signal Processing for Active Control. Amsterdam,
Netherlands: Elsevier, 2000.

[5] C. Hansen, S. Snyder, X. Qiu, L. Brooks, and D. Moreau, Active
Control of Noise and Vibration. Boca Raton: CRC Press, 2012.

[6] Y. Song, Y. Gong, and S. M. Kuo, “A robust hybrid feedback
active noise cancellation headset,” IEEE Trans. Speech Audio
Process., vol. 13, no. 4, pp. 607–617, Jul. 2005.

[7] S. Liebich, C. Anemüller, P. Vary, P. Jax, D. Rüschen, and
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