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ABSTRACT

Mobile devices for hands-free speech communication often show
significant nonlinear distortion in the sound emitted by their loud-
speakers. Therefore, conventional linear echo cancellation is not
sufficient for maintaining a high conversation quality. In this work
we propose a nonlinear echo canceller that uses two serially cascaded
adaptive filters to compensate for the nonlinear and linear echo. We
show that a stable operation of the cascaded structure is achieved by
using the multi-channel Kalman algorithm in the frequency domain
with filtered-x references. By modelling a nonlinearity with memory
we further improve the performance. To reduce the computational
complexity of the proposed solution we derive an efficient decimation
scheme by exploiting useful properties of the cascaded approach.

Index Terms— nonlinear acoustic echo cancellation, multi-
channel Kalman filter, cascaded adaptive filters

1. INTRODUCTION

Modern mobile devices for speech communication are often operated
in hands-free mode. This requires the loudspeaker to emit high sound
pressure levels because the near-end listener is probably far away
from the device and/or is in a noisy environment. At the same time,
small form factors, low energy consumption, and cheap components
for the loudspeaker and amplifier are requested. These circumstances
often lead to significant nonlinear components in the sound emitted by
the loudspeaker. Therefore, conventional acoustic echo cancellation
(AEC) based on linear filters only is not sufficient and solutions for
nonlinear AEC (NAEC) are needed to guarantee a sufficient quality of
the conversation. Most solutions found in literature focus on generat-
ing artificial nonlinear versions of the far-end signal. However, there
are also solutions that rely on measured voltage or current signals to
acquire a nonlinear reference close to the real loudspeaker output [1].
The solutions generating nonlinear versions of the far-end signal can
roughly be categorized into two approaches. The first one models
the whole echo path as one nonlinear filter with eventually multiple
parallel branches [2–4]. The second approach uses a serial cascade of
a nonlinear and linear filter [5–7]. On one hand the adaptation control
for the one-filter approach is easier than for the cascaded one. On the
other hand the number of coefficients becomes very large, because
the memory of the room acoustic path must be taken into account.
This in turn often results in a slow convergence or in an undermod-
elled echo path, because the nonlinear order must be chosen small to
guarantee sufficient convergence speed. For the cascaded structures
the degrees of freedom (nonlinear memory and order) can be tailored
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Fig. 1. Digital system model of the true echo path. The dashed
green and solid red boxes indicate linear and nonlinear subsystems,
respectively.

more to the physical echo path, resulting in much less coefficients.
However, the adaptation of the cascaded filters needs special treat-
ment to guarantee stability and convergence. In [8] a cascaded model
consisting of a power series with short memory for the nonlinear
part and a longer linear filter for the room acoustic transmission was
proposed. However, the adaptation was done in the time domain with
the NLMS algorithm that needs a sophisticated stepsize control and
initialization to be usable in practice. The problem of stepsize control
in cascaded filter structures was solved in [9] by using two Kalman
filters working in the time domain. One Kalman filter was used to
adapt a memoryless preprocessor and the other one was used for the
adaptation of the linear filter modelling the room acoustics. In Sec. 2
of this contribution we extend the model in [9] to a nonlinearity with
memory as proposed in [8], describe the parallel approach for the
adaptation and briefly discuss its properties. After that, in Sec. 3, we
show how to improve the performance by using a new structure in
the block-based frequency domain for the adaptation of the cascaded
approach and reduce its complexity. The evaluation on measured
signals is presented in Sec. 4.

2. SIGNAL MODEL

Fig. 1 shows an all-digital block diagram of the true echo path. The
digital far-end signal x(i) is amplified and fed into the loudspeaker.
The whole system containing amplifier and loudspeaker is modeled
as one system T{·}, which can be nonlinear and can contain memory.
The acoustic transmission of the sound through the room, the micro-
phone, and the amplifier is modeled as one linear FIR filter hrir(i).
The transmission relating the digital far-end signal x(i) to the digital
microphone signal y(i) is modeled as

y(i) = hrir(i) ∗ T{x(i)}, (1)

where i is the discrete time index (see Fig. 1). For the nonlinear
function T{·}, describing the amplifier and the loudspeaker, an odd
order power series of order P with memory is chosen according to

T{x(i)} =
bP/2c∑
l=0

wp(l)(i) ∗ xp(l)(i), with p(l) = 2l + 1, (2)
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wherewp(i) models the nonlinear memory of the p-th order. In reality
a digital-to-analog (DA) and analog-to-digital (AD) conversion is
also part of the system. We assume that both are linear and that the
DA conversion is modelled by wp(i) as suggested in [2]. The AD
conversion is easily incorporated in hrir(i). Often wp(i) is modelled
as a scalar only [3, 6, 9]. However, our experiments showed that
it can be beneficial for the NAEC performance to allow for some
nonlinear memory. The odd order power series was chosen because
it achieved best results when compared to other expansions with the
same maximum order P . However, the approach presented in this
paper is not limited to the odd order power series, i.e., other bases like
Legendre or Fourier expansions and even orders can be used as well.
For mitigating the aliasing that occurs when calculating the powers
xp(i) in the digital domain, we use an intermediate oversampling.

Conventionally, to circumvent difficulties arising with the adapta-
tion of cascaded filters, the single-channel nonlinear system is often
converted to a multi-channel linear system with nonlinear input sig-
nals. In the following we briefly introduce the full multi-channel
Kalman (Full-MCK) filter proposed in [3], that uses this conversion
and will serve as a state-of-the-art anchor for our proposed solution
described in Sec. 3. The conversion is done by inserting (2) into (1)
and moving hrir(i) into the sum. Then, the effective impulse response
hp(i) = hrir(i)∗wp(i) of the p-th order can be defined, where we as-
sume that hrir(i) and wp(i) are time-invariant during one frame to be
able to realize the convolution. Now the Full-MCK in the frequency
domain can be applied to adapt hp(i) with xp(i) as reference for the
p-th channel [10]. Because the nonlinear references are not mutually
orthogonal, we use the sub-diagonalized version of the Full-MCK as
proposed in [3].

The multi-channel interpretation of the nonlinear echo path en-
ables a convenient application of well-known algorithms for multi-
channel acoustic echo cancellation. However, it over-models the
physical system in terms of memory, because wp(i) is typically very
short and in most cases even modelled as a scalar only. Then, the
impulse responses hp(i) can simply be scaled versions of the same
room impulse response hrir(i). If NP channels and an FFT-size of
M are used, the Full-MCK has M ·NP degrees of freedom instead of
M+NP as in the assumed model, where NP =bP/2c+1 for the odd
order power series. Second, by increasing the number of channels,
the total number of coefficients that have to be adapted increases.
This raises the complexity and slows down the convergence speed of
the Full-MCK, which makes the tracking of time-variant acoustic sce-
narios more difficult. To improve the performance, we first introduce
a structure for the adaptation of the cascaded model with nonlinear
memory in Sec. 3 and then reduce its complexity in Sec. 3.1.

3. DUAL-STAGE MULTI-CHANNEL KALMAN FILTER

The proposed structure for NAEC shown in Fig. 2 maintains the cas-
caded structure of the true echo path model in the compensation path.
Only the loudspeaker and amplifier are modeled as a multi-channel
system with nonlinear references and memory ŵp(k) in stage 1 (S1),
whereas the transmission after the loudspeaker is modeled as a single-
channel system ĥrir(k) in stage 2 (S2). As two adaptive filters are
concatenated serially we have to carefully choose the reference sig-
nals and the error signal provided to S1. For the operation of serially
cascaded multi-channel nonlinear adaptive filters it is known from
literature that both, the initialization and the stepsize control, must be
treated with special care [5, 6, 11]. The proposed dual-stage solution
uses the Kalman algorithm to adapt both, the nonlinear S1 and the
linear S2. Therefore, this approach will be termed dual-stage multi-
channel Kalman (DualStage-MCK) filter. The problem of stepsize
control is alleviated because the Kalman algorithm already provides
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Fig. 2. Block diagram of the proposed dual-stage multi-channel
Kalman (DualStage-MCK). The nonlinear stage 1 (S1) is adapted
with a multi-channel Kalman filter using a Filtered-x nonlinear refer-
ence. The linear stage 2 (S2) is adapted with a single-channel Kalman
filter.

a near-optimum stepsize control [3]. With (↓ D) and (↑ D) a deci-
mation and interpolation is indicated in Fig. 2, respectively. This is
necessary for the complexity reduction discussed in Sec. 3.1. How-
ever, in this section no decimation or interpolation will be applied
yet, i.e. D = 1. For both stages we use the same overlap-save
framework with frame shift R and short-time Fourier transform of
size M as for the Full-MCK [3, 10, 12]. Therefore, we define the
frame-wise reference signal of the p-th order, its Fourier transform
and the multi-channel frequency-domain reference signal as

xp,M (k) = (xp(kR−M + 1), xp(kR−M + 2), . . . , xp(kR))T

Xp(k) = diag {FM · xp,M (k)} ∈ CM×M (3)

XMC(k) = [X1(k),X3(k), . . . ,XP (k)] ∈ CM×MNP , (4)

where k is the frame index, FM and F−1
M are the Fourier matrix of

size M ×M and its inverse, respectively. Now we start with the
description of S2 and define the frequency domain representation of
the filter coefficients to be estimated in S2 as

ĥrir(k) =
(
ĥrir,1(k), ĥrir,2(k), · · · , ĥrir,Nlin(k)

)T
(5)

ĤSC(k) = FM

(
ĥrir(k)

0M−Nlin

)
∈ CM×1. (6)

The constraining in (6) is necessary to avoid cyclic artifacts. The
effective impulse response of both stages is of length Nnl +Nlin− 1,
because it results from the convolution of ŵp(k) of length Nnl with
ĥrir(k) of length Nlin. It follows that the maximum length of ĥrir(k)
must be restricted to Nlin =M −R−Nnl + 2. With this we need
the last R samples of microphone signal

yR(k) = (y(kR−R+ 1), y(kR−R+ 2), . . . , y(kR))T (7)

to calculate the error signal and the reference signal of S2 as

E(k) = FMQR yR(k)−GRXSC(k)ĤSC(k) ∈ CM×1 (8)

XSC(k) = diag
{

GnlXMC(k)Ŵ
′
MC(k)

}
∈ CM×M . (9)

To avoid artifacts due to cyclic convolution the constraining matrices
Gχ are used, where Gχ = FMQχQH

χ F−1
M with χ ∈ {R, nl}

and the zero-padding matrices Qnl = (0Nnl−1 IM−Nnl+1)
T and

QR = (0M−R IR)
T . In is the identity matrix of size n× n and

0M−n is the zero-matrix of size n × (M − n). For the adaptation
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of ĤSC(k) the fully diagonalized single-channel Kalman algorithm
described in [13] is used with a forgetting factor of 0.9999.

Now we describe the adaptation in S1. The filters ŵp(k) mod-
elling the nonlinear memory wp(i) of the p-th order are adapted by
a multi-channel Kalman filter for p > 1, i.e., the Kalman filter has
ÑP = NP − 1 channels. The linear branch of S1 is excluded from
the adaptation to prevent any ambiguity of the coefficients of ŵ1 and
ĥrir(k), because both model a linear behavior. Therefore, ŵ1 is set
to a constant delay of i0 = Round[(Nnl − 1)/2] + 1 samples. This
choice of ŵ1 ensures some degree of freedom for the nonlinear mem-
ory of the loudspeaker. All other filter coefficients are initialized with
zeros. Generally, the nonlinear reference signals originating from
the odd order power series expansion are correlated. To mitigate a
negative impact on the convergence of the adaptive algorithm, we use
the sub-diagonalized version of the multi-channel Kalman algorithm
and a short length for the filters in the nonlinear stage. Thereby, a
change of the expansion series and the use of an expensive adaptive
orthogonalization scheme as suggested in [2] is avoided. The Kalman
filter of S1 gets the same error signal E(k) as S2. We define the
following frequency domain representation of the filter coefficients
to be estimated in S1:

ŵp(k) = (ŵp,1(k), ŵp,2(k), . . . , ŵp,Nnl(k))
T (10)

Ŵp(k) = FM

(
ŵp(k)

0M−Nnl

)
∈ CM×1 (11)

ŴMC(k) =
[
ŴT

3 (k),Ŵ
T
5 (k), . . . ,Ŵ

T
P (k)

]T
∈ CMÑP×1. (12)

Ŵ′
MC(k) =

[
ŴT

1 ,Ŵ
T
MC(k)

]T
∈ CMNP×1 (13)

The sub-diagonalized multi-channel Kalman equations for the adap-
tation of S1 can then be formulated as follows [3, 10]:

KMC(k) =
R

M
PMC(k)X

H
FxMC(k)D−1

MC(k) ∈ CMÑP×M (14)

Ŵ+
MC(k) = ŴMC(k) + KMC(k)E(k) ∈ CMÑP×1 (15)

P+
MC(k) = PMC(k)− R

M
KMC(k)XFxMC(k)PMC(k) (16)

ŴMC(k + 1) = AMC · Ŵ+
MC(k) (17)

PMC(k + 1) = A2
MC ·P+

MC(k) + Ψ∆∆,MC(k), (18)

DMC(k) =
R

M
XFxMC(k)PMC(k)X

H
FxMC(k) + Ψss,MC(k). (19)

The MÑP ×MÑP covariance matrix PMC(k) of the estimation
error consists of Ñ2

P diagonal matrices of sizeM×M . The forgetting
factorAMC of the Kalman algorithm is set to 0.9999. The covariance
matrices of the process and measurement noise, Ψ∆∆,MC(k) and
Ψss,MC(k), are estimated similar to [13]. The reference signals
XFxMC(k) provided to the Kalman filter of S1 are the nonlinear
reference signals xp(i) filtered by the current estimate ĥrir(k) of
S2. This prefiltering is necessary because the output of S1 is filtered
by ĥrir(k) and consequently the resulting error signal e(i) cannot
be correlated with the reference of S1 directly. The prefiltering
is also known as the Filtered-x (Fx) method, e.g., in active noise
cancellation [14, 15]. By using the Fx method the adaptation of S1
actually sees a swapped filter order, because it implicitly assumes that
the reference is first filtered by ĤSC(k) and then by ŴMC(k) in the
compensation path, too. In the time domain this swapping introduces
an error, because the involved filters are time-variant [16]. However,
as we are operating in the block-based frequency domain the filter

weights are constant during one frame and no error is introduced.
Therefore, the M × MÑP matrix XFxMC(k) containing the Fx
reference can be calculated with

XFxMC(k) = [XFx,3(k),XFx,5(k), . . . ,XFx,P (k)] (20)

XFx,p(k) = diag
{

GlinXp(k)ĤSC(k)
}
∈ CM×M , (21)

where Glin = FMQlinQH
linF−1

M and Qlin = (0Nlin−1 IM−Nlin+1)
T

is a zero-padding matrix. It can be shown that the energy scaling
factors R/M in (14), (16) and (19) do not need to be changed,
neither for the Fx signals nor for the decimated signals in Sec. 3.1.

3.1. Complexity reduction by decimation in frequency

Typically the nonlinear memory of the loudspeaker dynamics is much
shorter than the memory of the room impulse response. Consequently
the length Nnl of the filters ŵp(k) can be chosen much smaller than
the length Nlin of ĥrir(k). In the frequency domain the spectral
weights of ŵp(k) are smooth and can be represented by fewer FFT
bins than ĥrir(k). This enables a new possibility for reducing the
complexity of the multi-channel Kalman filter in S1. The complexity
reduction is done by decimating the one-sided spectrum of the Fx
reference signals X ′FxMC(µ) by a factor D according to:
X̃ ′FxMC(µ̃) = X ′FxMC(µ̃D) for µ̃ = 1, 2, . . . ,M/(2D)− 1 (22)

where D = 2n, n ∈ N0, µ and µ̃ are the original and decimated
frequency bin indices, respectively. The DC-bin (µ̃ = 0) and Nyquist-
bin (µ̃ =M/(2D)) are scaled by

√
D to prevent them from dominat-

ing the decimated signal. After decimation the full spectrum is recon-
structed exploiting the complex-conjugate symmetry. The spectrum
of the error signal E(µ) is treated in the same way. Now the Kalman
equations (14)–(19) can be computed at the reduced FFT size of
M̃ =M/D. The decimated FFT size M̃ must satisfy M̃ ≥ Nnl + 1
to be able to represent all coefficients of ŵp(i). In order to stay in the
same overlap-save framework, the computed weights of the decimated
S1 are transformed into the time domain, zero-padded to a length of
M and transformed back to the frequency domain with an FFT of
size M . To further reduce the complexity the constraining in (21)
and (9) can be omitted by setting Glin,nl =

M−Nlin,nl+1

M
IM , [12].

The complexity of the linear Kalman Clin, the Full-MCK CF, the deci-
mated DualStage-MCK C∗DS without constraining, and the decimated
DualStage-MCK CDS with constraining is calculated by counting the
number of real additions and multiplications for each frame as in [3]
Clin = O(M) +O(M log2 M)

CF = O(N3
PM) +O(N2

PM) +O(NPM) +O(NPM log2 M)

C∗DS = O(Ñ3
P M̃) +O(Ñ2

P M̃) +O(ÑP M̃) +O(ÑP M̃ log2 M̃)

+ Clin + CFx, (23)
CDS = C∗DS + Cconstr, (24)

where CFx = O(ÑPM) and Cconstr = O((ÑP + 1)M log2 M) is
the overhead for the application of the Fx-weights and the addi-
tional constraining, respectively. These approximations will be used
in Sec. 4.2 to evaluate the complexity reduction obtained by the
DualStage-MCK. It has to be noted that the far-end signal XMC(k)
is not necessarily smooth, even if it is constrained after the Fx stage.
Therefore, the decimation of XFxMC(k) introduces an error. How-
ever, as the sub-diagonalized Kalman equations adapt the spectral
weights in the reduced FFT domain separately for each FFT bin,
the adaptation of the bins of interest is still correct. Note that the
decimated version of XFxMC(k) is never converted back to the time
domain. This would, of course, introduce quite severe alias artifacts.
The same holds for the decimated version of the error signal E(k).
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Fig. 3. DualStage-MCK (D=1) vs. Full-MCK, abrupt change of
acoustic path at t=10.5 s from ’on microphone stand’ to ’on desk’.

4. EVALUATION
We evaluate the DualStage-MCK on measured signals, for which the
true nonlinear system is not known. For the acquisition of nonlin-
ear distorted echo signals, that are close to a real world scenario, a
Class D amplifier, an actual smartphone loudspeaker and a digital
MEMS microphone was used. All components were integrated into
a smartphone mockup with dimensions of 14 cm × 7 cm × 1 cm.
The echo-to-noise-ratio (ENR) of the recordings was 39 dB. The
mockup was placed onto a microphone stand inside a studio booth
to have a controlled acoustic environment with low reverberation
(T60 = 0.12 s). For the evaluation of abrupt changes in the acous-
tic path in Fig. 3, the mockup was also placed on a desk inside the
studio booth. For the far-end signal speech samples from the TSP
corpus [17] with different genders and speakers are used to account
for varying correlation properties of the excitation signal. As state-
of-the-art anchors we present results for the Full-MCK [3] and the
cascaded approach without memory [7], where the latter is mimicked
with the DualStage-MCK using Nnl = 1 samples. If nothing else
is specified we use a sampling rate of 8 kHz, a frame and FFT size
of M =256 samples, a frame shift of R=64 samples and an odd
order power series of order 7 for all algorithms. For the proposed
DualStage-MCK with memory we use Nnl = 15 samples. These
values were chosen, because our experiments showed that a further
increase of both, nonlinear order and memory, does not significantly
improve the performance. When dealing with measured signals only
x(i) and y(i) are accessible. Hence, we must rely on the estimated
echo return loss enhancement (ERLE∗) for evaluation, that is de-
fined by ERLE∗(i)[dB] = 10 log10

(
E{y2(i)}/E{e2(i)}

)
, where

the expectation operator E{·} is realized by recursive averaging.

4.1. Convergence behavior

In order to simulate a time-variance in the system, we introduced an
abrupt change in the acoustics at t= 10.5 s by switching between
the recordings obtained for the mockup on the microphone stand
and on the desk. Fig. 3 shows the resulting ERLE∗ for the proposed
DualStage-MCK with memory (Nnl = 15), the DualStage-MCK
without memory (Nnl=1) and for the Full-MCK. For all times the
DualStage-MCK with memory of order 7 consistently outperforms
the linear only AEC (DualStage-MCK, order 1) by several dB. From
0 s to 2 s it can clearly be seen that the DualStage-MCK with memory
shows fastest convergence, followed by the DualStage-MCK without
memory and the Full-MCK. Furthermore, both DualStage-MCK vari-
ants do not lose speed compared to the linear only AEC. Right after
the path change at t=10.5 s all algorithms show a similar conver-
gence behavior. From t=14 s the DualStage-MCK algorithms out-
perform the Full-MCK and for t>16 s the proposed DualStage-MCK
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2 0.64 0.36 8.22 4.67
4 0.50 0.23 6.47 2.92
8 0.44 0.16 5.64 2.08
16 0.41 0.13 5.24 1.69

(b)

Fig. 4. ERLE∗ for the DualStage-MCK (Nnl = 15) (a) and rela-
tive complexity (b) for different decimation factors D. 16∗ and
C∗DS indicate the performance and complexity without constraining,
respectively.

with memory outperforms the DualStage-MCK without memory. For
all algorithms the convergence speed at the beginning of the recording
is faster than after the abrupt change at t=10.5 s. This is because the
first order Markov model, assumed by the Kalman filter for the time
variance of the echo path, cannot model abrupt changes. Therefore,
all Kalman equations assume a more or less converged state and only
use a relatively small stepsize after t=10.5 s, too.

4.2. Complexity reduction
Up to now the computational complexity is quite high as a multi-
channel Kalman filter is used in S1 and, in addition, a single-channel
Kalman filter in S2. Both algorithms are running with an FFT-
size of M = 256. As already shown in Sec. 3.1, the FFT-size for
S1 can be chosen much smaller than for S2, because the ŵp are
short. We are using Nnl = 15 and hence an FFT-size of M̃ = 16
should be sufficient for the multi-channel Kalman filter in S1 to
adapt ŵp. This corresponds to a maximum decimation factor of
D=M/M̃=16. Fig. 4 (a) shows the performance of the DualStage-
MCK for different decimation factors D. No significant decrease of
the ERLE∗ performance can be seen when increasing the decima-
tion factor. As shown by the dashed green line ( ) the performance
slightly decreases if the constraining in (21) and (9) is omitted. We
can conclude from Fig. 4 (b) that with decimation and constraining
a reduction of the complexity by a factor of 2.3 is possible without
degrading the echo reduction performance. If the constraining is omit-
ted the total reduction of performance amounts to a factor of 7 with
D=16. Then, the complexity of the DualStage-MCK with memory
is only 69 % higher than the complexity of the linear only AEC. This
underlines the relevance of the DualStage-MCK with memory for the
application on mobile platforms with limited resources.

5. CONCLUSION

We presented the dual-stage multi-channel Kalman filter for nonlin-
ear AEC that mimics the cascaded nature of the true echo path by
serially concatenating one stage modelling the nonlinear loudspeaker
with memory and a subsequent stage modelling the acoustic trans-
mission through the room. By using the filtered-x method and the
multi-channel Kalman algorithm in the block frequency domain for
adaptation, a near-optimum stepsize control for the cascaded structure
is realized. The results for dynamic acoustic scenarios confirm the
superior performance of the proposed method compared to state-of-
the-art solutions. Furthermore by exploiting the short length of the
nonlinear memory, the computational complexity of the proposed
solution could significantly be reduced by a decimation of the FFT
size. This makes the proposed solution attractive for real-time speech
communication in mobile devices.
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