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ABSTRACT

The short-time Fourier transform (STFT) and the inverse short-time
Fourier transform are often used in signal analysis, modification, and
synthesis. In this work, we focus on the effect of overlapping STFT
subbands in relation to signal modification and synthesis. We il-
lustrate that the subband overlapping can impose a negative mixing
effect on STFT domain signal processing such as bandlimited fre-
quency shifting. We propose a subband filtering method, by using
subband low-pass and high-pass filters in the affected frequency re-
gion, to reduce the mixing effect locally without changing the gen-
eral STFT processing. We show in simulation experiments that our
subband filtering method is efficient; the bandwidth of the affected
frequency region is typically reduced by a factor of 2−3, and there is
significantly less signal distortion in the affected frequency region.

Index Terms— Short-time Fourier transform, STFT, ISTFT,
frequency shifting, transition region, subband filtering.

1. INTRODUCTION

The short-time Fourier transform (STFT) and inverse short-time
Fourier transform (ISTFT) are commonly used in signal processing
to analyze and modify signals [1], often in the form of modula-
tion filter banks [2]. The STFT is the analysis part and is often
based on a sliding-window and discrete Fourier transform (DFT),
and the ISTFT is the synthesis part and is typically carried out
using the overlap-add method. The STFT and ISTFT processing
are very useful in many audio signal processing applications, such
as noise reduction, source separation, pitch modification, and echo
cancellation.

The STFT divides the time domain signal x(n), where n is the
time index, into the STFT domain signals X(k, l) with k and l as the
STFT domain time and frequency subband indices; signal process-
ing can then be carried out in the STFT domain, on X(k, l), before
the ISTFT is used to reconstruct the time domain signal y(n); ide-
ally, a perfect reconstruction is possible, i.e., y(n) = x(n).

The window functions applied in the STFT and ISTFT have a
significant influence on the signal processing applied in the STFT
domain [3]. In this work, we focus on the STFT window function
and its impact on the processing in the STFT domain. Different fre-
quency subbands l are bandlimited based on the basis window func-
tion. Thus, the shaping and the overlap between frequency subbands
are highly dependent on the choice of this window function.

Fig. 1 shows an example of the first four frequency subbands, in
the STFT domain, with a 32-point Hamming window, and the DFT
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Fig. 1. An example of overlapping STFT frequency subbands.

size of 32. We observe that there are relatively big overlapping areas
between different subbands. In the case that we would like to do
bandlimited processing, e.g., the processing A for subband 0 and 1
and the processing B for subband 2 and above, effects from both
processing clearly appear in the transition region around the cut-off
frequency, in this case between the subband 1 and 2 at approximately
0.1π; within this region, the resulting processing is an undesired
mixture of the processing A and the processing B with almost equal
weight; far away from the cut-off frequency the mixing effect gets
negligible, and we obtain approximately either processing A or B.

When carrying out bandlimited processing in the STFT domain,
the mixing effect around the cut-off frequency cannot be avoided,
due to the design limitations in window functions. Depending on
the processing in the transition region, the effect of this mixing of
different processing can be unacceptable, as we demonstrate later.

To minimize the mixing effect, the overlap between subbands
can be designed to be smaller by using different window functions
or other type of filter banks [4,5]. However, very often the STFT pro-
cessing is a given part of a complete system with already specifically
defined properties, e.g., group delay and band overlap, and hence we
wouldn’t change the STFT processing, nevertheless we would like
to locally reduce the mixing effect in the transition region.

An example of this situation is a frequency shifting operation
implemented in the STFT domain. The frequency shifting can be
useful to improve system stability in closed-loop systems [6–10],
but it can also introduce audible artifacts to human listeners [11,12],
especially at the low frequencies, thereby the frequency shifting is
usually only applied above a cut-off frequency (around 1 kHz) [13,
14]. However, around this cut-off frequency, audible artifacts can
occur due to the mixing effect. In the following, we explain more on
the mixing effect, and we propose a concept to reduce this effect by
using the frequency shifting operation as an example.
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Fig. 2. An illustration of bandlimited frequency shifting in the STFT
domain, where it is only applied in the frequency subbands (shown
with triangles) with center frequencies above the cut-off frequency.
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Fig. 3. An illustration of neighbor subbands around the cut-off fre-
quency. The box indicates the relatively broad transition region.

2. AN EXAMPLE BANDLIMITED PROCESSING OF
FREQUENCY SHIFTING

In this section, we illustrate the mixing effect in the STFT domain
with an example bandlimited frequency shifting operation.

Let X ′(k, l) be the frequency shifted version of X(k, l), and in
the STFT domain it can simply be obtained as,

X
′(k, l) = X(k, l)e

j2πf ′(l)k R
fs , (1)

where f ′(l) denotes the amount of frequency shifting in Hz at dif-
ferent STFT subbands l, fs is the time domain sampling rate in Hz,
and R is the hop size in the STFT processing.

The frequency shifting is useful for feedback cancellation ap-
plications [9], however, it is often used above a cut-off frequency
fc only, as sound quality can be degraded by frequency shifting
[13]. This bandlimited processing is illustrated in Fig. 2, and in this
case the cut-off frequency fc is between two STFT subbands, where
f ′(l) = c1 and c2 for the subbands l below and above the cut-off
frequency, respectively; very often, c1 = 0 and 10 ≤ c2 ≤ 25 for
feedback cancellation applications.

In this example case with frequency shifting, the re-synthesized
signal contains a mixture of the frequency shifted signal and the
original signal without frequency shifting, both with almost equal
weight around the cut-off frequency; the result of this can be an au-
dible modulation effect [15], which is undesirable as it can degrade
sound quality perceived by human listeners. The modulation effect
is illustrated later in Fig. 9(b) in Sec. 4.

Fig. 3 illustrates the affected frequency region referred to as the
transition region, for simplicity the illustration is only made for the
two closest neighbor subbands.

In Sec. 3, we propose a subband filtering method, in the frame-
work of bandlimited processing in the STFT domain, to obtain a
narrower transition region around the cut-off frequency and thereby
minimize the mixing effect due to subband overlapping; hence it also
reduces the modulation effect in the bandlimited frequency shifting.
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Fig. 4. An illustration of the subband filtering method applied to
frequency subbands. In the two upper plots, a subband low-pass
filter and a subband high-pass filter are applied to these frequency
subbands to create the resulting subbands with steeper slopes, shown
in the two lower plots. The designation of low/high-pass filter is
defined in comparison to the subband cut-off frequency.
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Fig. 5. An illustration of neighbor subbands around the cut-off fre-
quency. The box indicates the narrower transition region.

3. NARROW TRANSITION USING SUBBAND FILTERS

In this section, we demonstrate a subband filtering method to obtain
a narrow transition region. The subband filtering is applied to the
neighbor subbands around the cut-off frequency, so that the result-
ing subbands close to the cut-off frequency have steeper slopes than
before. The basic idea of this method is illustrated in Fig. 4 for two
frequency subbands.

More specifically, the slopes of each subband in the STFT do-
main are originally defined by the STFT window function (finite im-
pulse response filter), and we make use of additional subband infi-
nite impulse response (IIR) filters to further increase the slopes of the
neighbor frequency subbands around the cut-off frequency. Hence,
the bandwidth of the transition region is reduced as the result. The
subband low-pass and high-pass filters illustrated in Fig. 4 are non-
symmetric around the center frequency; this is generally necessary
in the STFT domain, only in special cases these filters can be sym-
metric. Thus, the filters have typically complex valued coefficients.

The increased slopes of subbands lead to a narrower transition
region when re-synthesizing the processed signal in the STFT do-
main. Fig. 5 illustrates the narrow transition region when applying
the subband filtering to the neighbor frequency subbands around the
cut-off frequency; the new transition region is less than half of the
size compared to the original one illustrated in Fig. 3.

It is also possible to apply subband filtering on more subbands
near the cut-off frequency to obtain an even bigger improvement.
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The subband filtering requires additional computations, however, as
it is done in the subband domain with typically much reduced sam-
pling rate, the increase in computational complexity is limited.

Our design of the subband filters is based on spectral rotations
of a regular IIR filter with passband from −π

2
to π

2
, and its transfer

function H(z) in the pole-zero representation is

H(z) = g
(1− q1z

−1)(1− q2z
−1) . . . (1− qMz−1)

(1− p1z−1)(1− p2z−1) . . . (1− pNz−1)
, (2)

where g is a scaling factor, and q1, . . . , qM and p1, . . . , pN are the
M zeros and the N poles of the filter, respectively.

Let q = [q1, q2, . . . , qM ]T and p = [p1, p2, . . . , pN ]T , the
subband low-pass filter zeros q

lp = [qlp1 , q
lp
2 , . . . , q

lp

M ]T and poles
p
lp = [plp1 , p

lp
2 , . . . , p

lp
N ]T are obtained by

q
lp = |q| ⊙ e

j(∠q+ωs−
π
2
)
, (3)

p
lp = |p| ⊙ e

j(∠p+ωs−
π
2
)
, (4)

where |.| and ∠. determine absolute value and phase angle of each
element in a vector, and ⊙ denotes element-wise vector multiplica-
tion. Furthermore, the normalized subband cut-off frequency ωs is
derived as

ωs = (ωc · R+ π)%(2π)− π, (5)

where ωc is the normalized cut-off frequency for the frequency shift-
ing processing, and % denotes the remainder operator.

Similarly, we obtain the subband high-pass filter zeros q
hp =

[qhp1 , q
hp
2 , . . . , q

hp
M ]T and poles php = [php1 , p

hp
2 , . . . , p

hp
N ]T , as

q
hp = |q| ⊙ e

j(∠q+ωs+
π
2
)
, (6)

p
hp = |p| ⊙ e

j(∠p+ωs+
π
2
)
. (7)

Finally, the subband filter transfer functions H lp(z) and Hhp(z) are
obtained as

H
lp(z) = g

(1− q
lp
1 z−1)(1− q

lp
2 z−1) . . . (1− q

lp

Mz−1)

(1− p
lp
1 z−1)(1− p

lp
2 z−1) . . . (1− p

lp

Nz−1)
, (8)

H
hp(z) = g

(1− q
hp
1 z−1)(1− q

hp
2 z−1) . . . (1− q

hp

M z−1)

(1− p
hp
1 z−1)(1− p

hp
2 z−1) . . . (1− p

hp

N z−1)
. (9)

We now illustrate an example of creating subband low-pass and
high-pass filters using a regular IIR filter. First, we design a stan-
dard low-pass 4th order (where M = N = 4) Elliptic filter [16],
with passband ripple of 0.1 dB, stopband attenuation of 40 dB, and
passband cut-off frequency π

2
. Fig. 6 shows the pole-zero plot and

the magnitude response of this filter.
Moreover, we consider the case that the subband cut-off fre-

quency is at ωs = −0.25π using (2)-(9). Figs. 7 and 8 illustrate
the rotated pole-zero plots and the shifted magnitude responses of
the subband low-pass and high-pass filters, respectively.

4. SIMULATION EXPERIMENTS

In this section, we demonstrate the effect of subband filtering
through simulation experiments. In particular, we show the ef-
fect by using different frequency shifted signals; the frequency
shifting is applied in the subband domain with the DFT size of 128,
whereas the sampling rate is 20 kHz for the time domain signal.
The STFT and ISTFT windows in this example are both Hamming
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Fig. 6. An example IIR filter with the passband from −π
2

to π
2

.
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Fig. 7. An example subband low-pass filter, the dashed line shows
subband cut-off frequency.
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Fig. 8. An example subband high-pass filter, the dashed line shows
subband cut-off frequency.

windows with 125 points, and the hop size is R = 20. We only
apply the frequency shifting of 10 Hz from frequency subband 6,
which results in the cut-off frequency fc ≈ 0.86 kHz.

As explained in Sec. 2, due to the mixing effect, the frequency
region around the cut-off frequency fc consists of a mixture of the
unprocessed and frequency shifted signals. In the following, we
demonstrate that using the subband filtering technique presented in
Sec. 3 significantly reduce visible/audible modulation artifacts in
this frequency region, and we apply the subband filtering in four sub-
bands, two on each side of the cut-off frequency. The applied sub-
band filters are created using the example Elliptic filter as mentioned
in Sec. 3. Listening tests shown that the non-linear phase responses
of these filters had no perceptual impact in audio applications.

Fig. 9 shows an example of a chirp signal with linear frequency
increase from 0.4 kHz to 1.2 kHz. Fig. 9(a) shows the spectrogram
of the unprocessed chirp signal, whereas Fig. 9(b) shows the pro-
cessed chirp signal when bandlimited frequency shifting has been
applied in the STFT domain, where the cut-off frequency is fc ≈
0.86 kHz. Fig. 9(c) shows the processed signal when the subband
filtering has been applied in addition to the frequency shifting.

We clearly observe that due to the mixing effect, both processed
signals shown in Figs. 9(b) and 9(c) suffer from modulation artifacts
around the cut-off frequency fc ≈ 0.86 kHz. However, the further
subband filtering processed signal shown in Fig. 9(c) has much less
modulation, and the affected frequency region has a bandwidth of
about 100 Hz, which is much narrower compared to the processed
signal without subband filtering shown in Fig. 9(b), where the af-
fected frequency region covers more than 300 Hz.

When listening to both processed chirp signals, it is clear that
the one with subband filtering has much less audible modulation,
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Fig. 9. An example of chirp signal, and frequency shifting is applied
above the cut-off frequency of fc ≈ 0.86 kHz. The mixing effect is
observed around the cut-off frequency. (a) Unprocessed chirp signal.
(b) Without subband filtering. (c) With subband filtering.

and the affected frequency region is much narrower.
Another sound example of a church bell ringing is illustrated

in Fig. 10. Fig. 10(a) shows the spectrogram of the unprocessed
recording of the church bell ringing sound. We observe from Fig.
10(b) that the processed signal without subband filtering is clearly
different to the unprocessed reference signal around fc ≈ 0.86 kHz
(within the box), where a modulation over time occurs due to the
mixing effect. In Fig. 10(c), we observe that the processed signal
with further subband filtering, although not perfect, is closer to the
original unprocessed signal shown in Fig. 10(a).

More interestingly, when listening to the processed signal in Fig.
10(b), there is a clearly audible reverberated tail of the bell ringing
sound around 0.8 − 0.9 kHz, where the audible difference between
Fig. 10(a) and Fig. 10(c) is very small if at all.

Finally, we demonstrate the mixing effect around the cut-off fre-
quency using the power spectral densities (PSDs) of different white
noise sequences. Fig. 11 shows the PSDs of a white noise sequence
and both processed versions with frequency shifting.

Without subband filtering, we observe that the mixing effect in
the STFT domain leads to a spectral dip of more than 3 dB around
the cut-off frequency of fc ≈ 0.86 kHz, and the PSD differs from
the unprocessed white noise PSD around 0.6 − 1.0 kHz. With ad-
ditional subband filtering, the dip is both shallower and narrower at
the same time, about half of the size; however, its PSD differs from
the unprocessed white noise PSD around 0.3 − 1.3 kHz, which is
a bigger region compared to the processing without subband filter-
ing. Nevertheless, the deviation in the regions of 0.3 − 0.6 kHz and
1.1− 1.4 kHz are very small and less than 0.5 dB, and in practice it
does not lead to audible signal distortions.
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Fig. 10. An example of church bell ringing sound, and frequency
shifting is applied above the cut-off frequency of fc ≈ 0.86 kHz.
The mixing effect is observed around the cut-off frequency indicated
by the box. (a) Unprocessed bell sound. (b) Without subband filter-
ing. (c) With subband filtering.
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Fig. 11. An example of white noise sequence and subband frequency
shifting processing without and with subband filtering.

5. CONCLUSIONS

We demonstrated that the unavoidable overlapping in STFT sub-
bands can create undesired signal distortion referred to as the mix-
ing effect, e.g., the modulation over time when using bandlimited
frequency shifting in the STFT domain. We presented a general ap-
proach by using subband filtering to reduce the mixing effect locally.
We showed through simulation experiments that the proposed sub-
band filtering method can significantly reduce the mixing effect and
hence signal distortions, as it typically reduces the bandwidth of the
affected frequency region by a factor of 2− 3.
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