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ABSTRACT

Acoustic feedback cancellation has gained a major and steady role in
the research fields of signal processing over the past decades, since it
is inevitable for numerous applications such as hearing aids or in-car
communication systems. In this paper, we investigate measurement
noise covariance estimation approaches for feedback cancellation
based on the frequency domain adaptive Kalman filter (FDAKF).
The capabilities of these estimation methods significantly affect the
performance of the FDAKF. We summarize and investigate existing
approaches from literature and furthermore provide two new pro-
posals that are explicitly motivated for the use in acoustic feedback
cancellation. Experimental validation in the context of an in-car
communication system shows that our proposals obtain much bet-
ter speech quality compared to existing approaches and additionally
increase the overall feedback suppression.

Index Terms— feedback cancellation, frequency domain adap-
tive Kalman filter, measurement noise covariance estimation

1. INTRODUCTION

Applications with a loudspeaker-enclosure-microphone (LEM) sys-
tem are very common these days: teleconference and hands-free
devices, hearing aids and in-car communication systems, only to
name a few. They all have in common that the microphone sig-
nal includes an undesired echo or feedback component from the
loudspeakers. Typically, these systems use an adaptive filter to esti-
mate the LEM impulse response and create an echo estimate which
is subtracted from the microphone signal. Thereby an echo- (or
feedback-)free enhanced signal is obtained. As for example pointed
out in [1], one well-known and approved approach in adaptive filter
theory is the Kalman filter. As frequency domain adaptive Kalman
filter (FDAKF) it has been succesfully deployed for acoustic echo
cancellation (AEC) [2] and further developed in many publications
such as [3, 4, 5, 6]. Advantages of the FDAKF by now are its near-
optimal stepsize control, robust performance even when ’near-end’
and ’far-end’ are active simultaneously (double talk), and the possi-
bility to efficiently combine it with a residual echo suppression [2, 7].

In the context of acoustic feedback cancellation (AFC), where
the deployed approaches are additionally challenged by the closed
feedback loop, a wide variety of algorithms is available. These reach
from time domain approaches [8] to subband approaches [9, 10], sys-
tems based on the normalized least mean squares [11, 12], and many
more. Just in the recent few years, a selection of publications ac-
credits the capability of the FDAKF for AFC and proposes systems
based on it, as for example [13, 14, 15] or [16].

However, as stated in [17], it is of crucial importance for the
adaptive Kalman filter to estimate the covariances of its process
noise and measurement noise correctly. Not till then it is possi-
ble to obtain an optimal estimation of the true system state, i.e.,
here the impulse response transfer functions. Though literature
provides well-investigated covariance estimation rules for Kalman-
based AEC, e.g., [2] or [18], publications with focus on AFC merely
adopt these techniques without considering the additional signal
correlation in the closed feedback loop. So far, literature covers
investigations of covariance learning rules for Kalman-based AFC
insufficiently.

In this paper, we investigate measurement noise covariance es-
timation methods for feedback cancellation based on the frequency
domain adaptive Kalman filter. We summarize and investigate exist-
ing approaches from the literature and furthermore provide two new
proposals that are explicitly motivated for (yet not limited to) the use
in acoustic feedback cancellation. If not yet published before, all ap-
proaches are extended for the use in anN -channel system, consisting
of one microphone and N loudspeakers. The experimental valida-
tion is performed for the single-channel as well as multi-channel case
in the practical context of an in-car communication (ICC) system.

The remainder of this paper is structured as follows: In Sec-
tion 2, a system overview is given and the N -channel FDAKF in-
cluding residual echo suppression (RES) is described. Known ap-
proaches for the estimation of the measurement noise covariance are
summarized in Section 3, followed by the two new proposals of this
paper. In Section 4, the experimental validation of all approaches is
given. Section 5 provides conclusions.

2. SYSTEM MODEL AND ALGORITHM

A block diagram of the underlying system model is shown in Fig-
ure 1. Starting in the top left of the figure, an optional block indi-
cates the possibility to connect an audio player (or similar) as ’ad-
ditional signals’ to the feedback loop. The respective 1 to N chan-
nels xj(n), j ∈ N = {1, ..., N}, provide the reference signals for
feedback cancellation and are connected to the 1 to N loudspeak-
ers in the loudspeaker-enclosure-microphone (LEM) model. The
LEM model consists of the impulse responses hj(n) (for simplic-
ity written as time-invariant) providing the feedback signals dj(n).
Superimposed with the desired signal s(n) and additional ambient
noise n(n), the microphone signal y(n) is formed. By subtracting
the estimated feedback signals, the FDAKF computes an error sig-
nal e(n) which is then subject to a residual feedback suppression,
amplified with a gain factor, and finally added to the loudspeaker
signals in the feedback loop.

965978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



LEM
Model

Additional
Signals

(optional)

...

FDAKF
Residual
Feedback

Suppression

...

h
1
(n

)

...

h
N

(n
)

y(n)

s(n)

n(n)

dj(n)∑
j

d̂j(n)

gain

sPF(n)

x1(n)

...
xN (n)

e(n)

Fig. 1. System model of N-channel feedback cancellation.

The algorithm of the variationally-diagonalized FDAKF is well-
known from former publications as for example [3, 19] or [5]. Since
the FDAKF and its postfilter for residual echo (or here rather feed-
back) suppression go hand in hand [7], we treat them as one ensem-
ble within this work. On a frame basis, the algorithm is given in
compact form as follows.

As preparatory processing reference signals (j∈N ) are ob-
tained xj(`)=

[
xj
(
(`−1)·R+R−K

)
, ..., xj

(
(`−1)·R+R−1

)]T ,
with frame index `∈{1, 2, ...} and frame shift R. Their DFT is
computed as Xj(`) = diag{FK×K ·xj(`)} with the K-point DFT
matrix FK×K . The corresponding part of the microphone signal
y(`)=

[
0K−R, y

(
(`−1)·R

)
, ..., y

(
(`−1)·R+R−1

)]T is as well
transformed to the DFT domain Y(`)=diag{FK×K ·y(`)}.

Starting the coefficient adaptation, the system functions are pre-
dicted as Ĥ+

j (`) = aĤj(`−1), initially with Ĥj(0) = 0K×K . The
process noise covariance matrices are computed for the intra-channel
case: Ψ∆

j,j(`−1) = (1 − a2)
[
Ĥj(`−1)ĤH

j (`−1) + Pj,j(`−1)
]
,

with Pj,j(0) = IK×K , while the cross-channel terms remain zero:
Ψ∆
j,i 6=j(`−1)=0K×K . ( )H denotes the Hermitian. As next steps the

state error covariance matrices are predicted as P+
j,i(`)=a2Pj,i(`−

1) + Ψ∆
j,i(`− 1), and a preliminary error signal (see [5]) is com-

puted in the DFT domain Ẽ(`) = Y(`) −
∑
j

G ·
(
Xj(`) ·Ĥ+

j (`)
)
,

with the overlap-save constraint matrix G = FK×KQQTF−1
K×K and

Q = (0R×K−R IR×R)T .
Subsequently, the variable of interest for this work, namely the

measurement noise covariance matrix ΨS(`), is computed. Various
methods along with our new proposals will be discussed in detail
within the next section.

Now, the respective stepsizes are given by
µj,i(`)= R

K
P+
j,i(`)

[
R
K

(∑
j

∑
i

Xj(`)P
+
j,i(`)X

H
i (`)

)
+ΨS(`)

]−1,

which are in turn used to compute the Kalman gain for each chan-
nel as Kj(`) =

∑
i

µj,i(`)X
H
i (`). Using the Kalman gains, the

state error covariance matrices are updated to Pj,i(`) = P+
j,i(`)−

R
K

Kj(`)
(∑
j

Xj(`)P
+
j,i(`)

)
, and finally the estimated system func-

tions are updated: Ĥj(`)=Ĥ+
j (`)+Kj(`)·Ẽ(`).

Having obtained the new estimates of the system functions, the
actual feedback cancellation can be performed. To accomplish this,
the estimated feedback signals D̂j(`) = G·

(
Xj(`)·Ĥj(`)

)
are used

to obtain the enhanced signal: E(`) = Y(`)−
∑
j

D̂j(`). Using an

inverse DFT, the time domain equivalent of the enhanced signal is
obtained as e(`) = F−1

K×K ·E(`). Due to overlap-save constraints,
only the last R samples of the output e(`) are used, all others are
simply discarded.

As derived in [7] (for λ = 1), an efficient formulation to ob-
tain the Wiener postfilter coefficients for residual feedback suppres-
sion directly from the previous coefficient adaptation is given by
GPF(`, k) =

(
1−
∑
j

Xj(`, k)µj(`, k)X∗j (`, k)
)λ, where µj(`, k) =(

Ψss(`, k) + R
K

(∑
i

Xi(`, k)P+
i,i(`, k)X∗i (`, k)

))−1

· R
K
P+
j,j(`, k)

is a separate stepsize definition used only for the postfilter and λ is
a design parameter introduced in this work. In the single-channel
case, this formulation is equivalent to [2, 4].

3. MEASUREMENT NOISE COVARIANCE ESTIMATION

The measurement noise covariance matrix ΨS has an important role
within the FDAKF. It is basically a joint representation of the non-
feedback signal components

(
s(n)+n(n)

)
in the microphone signal

and allows the algorithm to distinguish between feedback and non-
feedback components. Compared to acoustic echo cancellation, in
the case of acoustic feedback cancellation the estimation of ΨS be-
comes even more difficult and at the same time more relevant, since
the desired signal component s(n) and the undesired feedback com-
ponent are highly correlated. In the following, the known approaches
for the estimation of ΨS from literature are summarized and two
new proposals are presented, the latter specifically matched towards
acoustic feedback cancellation. All approaches will be evaluated ex-
perimentally in Section 4.

Oracle • First of all, an upper performance bound as influenced
by ΨS can be determined with an oracle experiment. This can
be obtained by simply setting

ΨS(`)=(1−β) ·
(
Y(`)−

∑
j∈N

Dj(`)
)
· (1)

(
Y(`)−

∑
j∈N

Dj(`)
)H

+β ·ΨS(`−1),

using the known feedback components Dj . The smoothing fac-
tor β = 0.5 avoids harsh changes over time which would de-
grade the performance.

ME’10 • In [18] (Malik and Enzner) and [19, 20], an online
maximum-likelihood estimation rule has been derived that is
based on the a posteriori error signal of the previous frame1.
Again extending the given formula by a smoothing factor
β = 0.5, the learning rule is then given as

ΨS(`) = (1−β) ·
(
E(`−1)EH(`−1)+ (2)

R
K

(∑
j∈N

∑
i∈N

Xj(`−1)Pj,i(`−1)XH
i (`−1)

))
+

β ·ΨS(`−1).

JEF’14 • The general idea of ME’10 has been taken up by Jung
et al. in [5] and has been refined for the FDAKF algorithm in
acoustic echo cancellation. Using the given formula, the au-
thors propose to use the preliminary error signal of the current

1Note that the variable Pj,i(`) used in [18] is not yet available at the time
when ΨS(`) is computed. Therefore we deploy Pj,i(`−1) here.
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frame Ẽ(`) and the predicted state error covariance P+
j,i(`). The

estimation formula is then given as

ΨS(`) = (1−β) ·
(
Ẽ(`)ẼH(`)+ (3)

R
K

(∑
j∈N

∑
i∈N

Xj(`)P
+
j,i(`)X

H
i (`)

))
+ β ·ΨS(`−1),

again with smoothing factor β = 0.5.

KME’14 • Interestingly, in the presentation of the partitioned
FDAKF in [4], Kuech et al. avoid the explicit computation of
ΨS . Instead, they directly substitute the covariance ΨEE of the
error signal into the stepsize definition as

µj,i(`) = R
K

P+
j,i(`)Ψ

−1
EE(`). (4)

Since they have not explicitly stated how ΨEE is obtained,
we assume it to be based on the preliminary error signal as
ΨEE(`) = (1−β) ·

(
Ẽ(`)ẼH(`)

)
+ β · ΨEE(`−1). Here

the smoothing factor is set to β = 0.6 to obtain best results
within our experiments (β= 0.5 led to an instable system), and
ΨEE(0) = 0K×K .

YEY’17 • Although it is not directly used in a Kalman filter, a
very interesting yet different approach is shown by Yang et al.
in [21] for the FDAF. The authors obtain the power spectral den-
sity (PSD) of the measurement noise as

ΦS(`, k) = (1− Cx̄e(`, k)) · Φee(`, k). (5)

Here,Cx̄e(`, k)= |Φx̄e(`, k)|2 /
(
Φx̄x̄(`, k)Φee(`, k)

)
, whereas

the used PSDs and cross-PSDs are being estimated recursively:
Φ̂ee(`, k)=αΦ̂ee(`−1, k) + (1−α)|Ẽ(`, k)|2,

Φ̂x̄x̄(`, k)=αΦ̂x̄x̄(`−1, k) + (1−α)|X(`, k)|2, and

Φ̂x̄e(`, k)=αΦ̂x̄e(`−1, k) + (1−α)X
∗
(`, k)Ẽ(`, k).

In contrast to ME’10 or JEF’14, the variable x̄ and its DFT X(`)
are only based on the current frame: x̄(`)=

[
0K−R, x

(
(`−1)·R

)
,

..., x
(
(`−1)·R+R−1

)]T , ’in order to match the definition’ [21]
of the microphone signal component.
For this approach we found the smoothing factor α=0.6 to give
the best results within our experiments. It should be noted that
we will use the preliminary Ẽ instead of E for the application
in the FDAKF, since—as before—E is not yet available at that
time instant. Furthermore, we obtain an extension to the N -
channel case by
Cx̄e(`, k) =

∑
j∈N
|Φx̄je(`, k)|2 /

(
(
∑
j∈N

Φx̄j x̄j (`, k))Φee(`, k)
)
,

finally obtaining ΨS(`) = diag{[ΦS(`, 1), ...,ΦS(`,K)]T }.
Proposal 1 • Our first proposal is based on the idea of YEY’17

to only take the current frame of the reference signal into ac-
count, however, with a very different motivation. While Yang et
al. [21] did this to match the different PSDs, it has a significant
and interesting influence in the case of feedback cancellation:
It reduces the correlation between reference signals and the mi-
crophone signal. Since the reference signals contain a slightly
delayed segment of s(n), to some extent the signals already hurt
the generally underlying assumption of statistical independence
between these two components. Though noting that previous
frames of the reference signals are obviously necessary in the
other FDAKF computation steps to identify the feedback paths
correctly, including these past frames within this computation

JEF’14

fr
eq

ue
nc

y

YEY’17 Proposal 1

time

Proposal 2 Oracle

Fig. 2. Example spectrograms for the stable approaches: Section of
the postfiltered enhanced signal sPF(n). The excerpt is shown in the
range from 0 to 2 kHz, with a duration of 0.5 s.

step is more likely to result in a misinterpretation of the feed-
back components as desired signal. Conversely: Focusing the
reference signal in this step to only contain the current frame
should as well reduce the correlation and thus result in a better
performance. Accordingly, we induce YEY’17 into the Kalman-
optimized formulation of JEF’14 and just use the most recent
frame of the reference signals, resulting in

ΨS(`) = (1−β) ·
(
Ẽ(`)ẼH(`)+ (6)

R
K

(∑
j

∑
i

Xj(`)P
+
j,i(`)X

H
i (`)

))
+ β ·ΨS(`−1),

with smoothing factor β = 0.5.

Proposal 2 • Our second proposal is a more extreme continua-
tion of our first proposal. We assume the preliminary error sig-
nal Ẽ(`) to be estimated perfectly already and therefore ignore
the predicted state error covariances in this computation step.
This allows us to drop the term of reference signals and predicted
state error covariances completely, now significantly simplifying
the originally derived solution of [18]. With

ΨS(`) = (1−β) · Ẽ(`)ẼH(`) + β ·ΨS(`−1) (7)

and smoothing factor β = 0.5, we result in the computationally
most efficient approach, since no further computation steps are
included anymore.

4. EXPERIMENTAL VALIDATION

The experimental validation is performed by deploying the FDAKF
in different configurations (single- and multi-channel) in the practi-
cal context of an in-car communication system. To enhance com-
munication between passengers inside a car cabin and to improve
speech intelligibility for rear seat passengers, the driver’s speech is
amplified and reproduced in the rear of the car. The car cabin is
modeled by one microphone and two loudspeakers (left/right) in the
front, and two loudspeakers (left/right) in the rear. The four impulse
responses (IRs) from loudspeakers to microphone are randomly gen-
erated with exponential energy decay and a car-typical reverberation
time of T60 = 50 ms, and are cut off after 50 ms. Giving consid-
eration to different distances and acoustic dampening between front
and rear loudspeakers towards microphone, the two front IRs are
multiplied with an empirically motivated factor 0.7 and the rear IRs
with 0.3 [15].
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Experiment ©1 ©2 ©3

ERLE MOS ERLE MOS ERLE MOS

Oracle 13.30 3.62 9.81 1.42 16.01 2.69
ME’10 instable
JEF’14 12.23 3.08 8.53 1.35 14.21 2.39
KME’14 12.13 3.02 instable
YEY’17 10.88 2.73 8.60 1.33 14.12 2.31
Proposal 1 12.69 3.17 8.59 1.35 14.76 2.46
Proposal 2 12.80 3.17 8.54 1.34 14.75 2.47

Table 1. Mean ERLE and PESQ MOS on sPF(n). ©1 Mono
FDAKF, only driver’s speech. ©2 Mono FDAKF, driver’s speech
plus noise and additional music. ©3 Stereo FDAKF, driver’s speech
plus noise and additional music. The two best approaches apart from
the oracle are printed in boldface font.

The FDAKF system is set up to work with a sampling frequency
of 16 kHz, DFT size K=1024, frame shift R=64, FDAKF forget-
ting factor a=0.9995, and the postfilter design parameter is set to
λ=2. As shown in Figure 1 and done in [7], the postfilter is applied
after the subtraction of the estimated feedback signals. Since low
delay is usually essential for feedback cancellation, an asymmetric
window structure based on [22] is used to obtain an overall delay of
only 12 ms (typically underlying buffering structures included [15]):
In each frame the most recent 4R samples of the FDAKF output
e(n) are multiplied with the analysis window and zero-padded to be
subject to a K-point DFT. Now the K postfilter coefficients are ap-
plied, and the result is again subject to aK-point IDFT. Only the first
2R output samples are multiplied with the smaller synthesis window,
and combined with the previous frame’s output to yield the postfil-
tered enhanced signal sPF(n). The gain applied afterwards is set to
fairly sufficient 12 dB.

The influence of all presented measurement noise covariance
estimation rules will be investigated in three different experiments:
©1 Using a single-channel (mono) FDAKF while only driver’s
speech s(n) is active and reamplified to the rear loudspeakers.
©2 Using a mono FDAKF and driver’s speech as before, but with
superimposed noise n(n) at the microphone and stereo music as
additional signal on all loudspeakers. ©3 Considering the same
scenario as ©2 , but deploying a stereo-channel FDAKF to validate
the performance for more than one channel. For the stereo FDAKF
both front and both rear channels are combined and multiplied with
factor 0.5 to provide the FDAKF reference signals xj(n), for the
mono case these are further combined to provide only one reference
channel, respectively.

Intentionally, the first experiment©1 is set up as simple as pos-
sible. By only considering driver’s speech s(n) (without noise at the
microphone or additional signals on the loudspeakers), it is possible
to focus solely on the speech quality within the feedback loop. In
this setting ITU-T Recommendation P.501 [23, Secs. 7.3.5, 7.3.7]
short conditioning sequence II followed by the single-talk sequence
is used as driver’s speech s(n) at a level of −26 dBov. The results
are given in the left part of Table 1. Note that convergence times are
not explicitly listed, since they are nearly similar for all (stable) ap-
proaches. As first measure, the mean echo (and feedback) return loss
enhancement (ERLE) is given in dB, and is computed over the entire
sequence as done in [7, 24]. A higher value signifies more feedback
suppression. The oracle estimation of ΨS is able to achieve a mean
ERLE of 13.3 dB. The approach of ME’10 is not capable to cancel
the feedback sufficiently at this gain and results in an instable sys-
tem. Therefore, no results can be given for the simple scenario and
the approach will be omitted in the investigation of the more chal-

lenging scenarios. It can be seen that JEF’14 and KME’14 obtain
similar ERLE values of about 12.2 dB, while YEY’17 remains ca.
1.3 dB below that. In contrast, both proposal approaches obtain a
higher ERLE value, ending up only ca. 0.5 and 0.6 dB below oracle
performance, respectively.

As further measure, the recently updated wideband PESQ MOS
LQO [25, 26] computed on the entire enhanced signal sPF(n)
with s(n) as reference is given (dubbed MOS). The PESQ re-
sults are in line with the mean ERLE values, revealing YEY’17
with only 2.73 MOS points and JEF’14 and KME’14 more than
0.3 points above that. Both proposal approaches obtain an even
about 0.1 points higher MOS score, thereby being closest to the
oracle performance. In Figure 2, we provide an excerpt of the
enhanced signal spectrograms to determine further differences. It
can easily be seen that while the oracle speech component is rather
clear and crisp, JEF’14 and YEY’17 are much more reverberant and
distorted. In contrast, the proposals exhibit only minor differences,
are much less reverberant and more similar to the oracle speech
component. Note that the spectrogram of KME’14 is not given
here, since it is found to be instable in the next investigated scenario
and therefore doesn’t seem to be suitable for feedback applications.

In the second experiment©2 , we now superimpose ITU-T P.501
signal in-car noise as n(n) at an SNR of 15 dB with the driver’s
speech signal s(n). Furthermore, we add stereo pop music at a chal-
lenging level of −26 dBov as left and right loudspeaker signals to
interfere with the desired driver’s speech and the re-amplified en-
hanced signal. The results are shown in the center of Table 1. As to
be expected, the mean ERLE and PESQ values are generally lower
than before. KME’14 is not able to maintain a stable system, and
will therefore be omitted in the last experiment. All other approaches
obtain comparable instrumental results of around 8.55 dB ERLE and
1.34 MOS points. Interestingly, YEY’17 now also obtains similar
objective results as the proposed approaches. Though the spectro-
grams cannot be presented here for all experiments due to limited
space, subjective impressions on the spectrograms reveal the same
behaviours as for experiment©1 , leaving YEY’17 with a more dis-
torted and both proposals with the most crisp speech component.

In the final experiment©3 we deploy the stereo-channel FDAKF
(Section 2, N = 2) in the same experimental setting as before. In
general, this improves the performance massively. The subjective
impressions on the spectrograms as well as the instrumental results
given in the right of Table 1 confirm the findings of the previous
experiments. While JEF’14 now slightly outperforms YEY’17 by
0.09 dB in mean ERLE and 0.08 points in PESQ MOS, both of our
new proposals obtain a mean ERLE and PESQ MOS of more than
0.5 dB and ca. 0.17 MOS points, respectively, even above JEF’14.

5. CONCLUSIONS

In this paper, we investigated measurement noise covariance esti-
mation methods for feedback cancellation based on the frequency
domain adaptive Kalman filter. Considering the significant impact
of the deployed estimation approach on the feedback cancellation
performance, we summarized known methods from literature, ap-
plied them to the N -channel case, and provided two new proposals
that are explicitly motivated for the use in acoustic feedback can-
cellation. The experimental validation was performed in the context
of an in-car communication system. Instrumental measures as well
as analysis of the spectrograms reveal a robust performance of the
two proposals: They do not only obtain a much better speech quality
compared to existing approaches, but also achieve a higher overall
feedback suppression.
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