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ABSTRACT

This paper describes how to encode into a spherical-harmonic repre-
sentation of a 3-D sound field using a cylindrical microphone array.
The standard way to represent a sound field is to use higher order
Ambisonics specified over a spherical region. If the sound field is
instead measured using a cylindrical array, it is more naturally ex-
pressed in terms of cylindrical harmonics. In this paper, the trans-
forms for conversion between cylindrical and spherical-harmonic
representations are derived. Simulations then compare the perfor-
mance of cylindrical and spherical array processing in estimating
the spherical-harmonic coefficients of a sound field.

Index Terms— Microphone array, Ambisonics, cylindrical har-
monics, spherical harmonics, associated Legendre transform

1. INTRODUCTION

High-performance microphone arrays are important for application
in spatial audio, noise source identification and surveillance. Ten
years ago, the capture of spatial sound became popular with spher-
ical microphone arrays [1–5]. Whilst circular microphone arrays
have a limited ability to discriminate sounds in elevation, spheri-
cal array directivity is the same in every look direction. However
for many applications, it is not necessary for the array to provide the
same directivity in all directions. When spatial sound is spatialized
by a listener, the listener’s azimuthal acuity is better than their el-
evational acuity. By designing an array with a reduced resolution
in elevation, fewer microphones are required. Cylindrical micro-
phone arrays are suitable here, because the azimuthal directivity can
be chosen independent of elevational directivity.

Past works in cylindrical array processing have focussed on uti-
lized a single ring of microphones mounted onto the cylinder [6–10].
Such arrays possess a small number of microphones, but the designs
are only appropriate for discriminating sounds propagating in the
horizontal plane. A circular microphone array that can be focussed
onto an out-of-plane source was devised in [11].

One open-space geometry using multiple concentric micro-
phone arrays at different heights was proposed in [12] for measuring
sound field coefficients (SFCs). Reduced processing complexity
is achieved here by exploiting the zeros of associated Legendre
functions. The apparent aperture of the circular array can be en-
larged by mounting the microphones onto a sound hard or absorbent
cylinder, or a special baffle designed to air-couple the surface waves
[6, 8]. This increases the travel time of waves propagating around
the cylinder which improves beamformer directivity.

Cylindrical representations of a sound field have been directly
incorporated into the sound field representations in an approach

called mixed-order Ambisonics [13, 14]. Measuring spherical-
harmonic SFCs using a cylindrical array was proposed in [15] where
the SFCs are estimated by extrapolating the sound pressure to vir-
tual microphones on an open spherical array of larger radius. One
approach is to determine the cylindrical-harmonic SFCs for a small
set of elevation angles using fixed beamformer directions [16]. An
alternate representation of a sound field is the plane-wave decompo-
sition, which is applicable to both cylindrical and spherical arrays
[17].

In this paper we show how to convert between the cylindrical
representation of a sound field and the spherical-harmonic represen-
tation used in higher order Ambisonics formats, based on the associ-
ated Legendre transform. This extends on [10] which was limited to
arrays consisting of a single ring of microphones. We further show
how to convert the signals measured on a cylindrical microphone
array directly into the spherical-harmonic representation. We then
simulate using a cylindrical microphone array, and using a spherical
microphone array of similar dimensions, to encode a 3-D sound field
into a spherical-harmonic representation.

2. SOUND FIELD REPRESENTATION IN SPHERICAL
AND CYLINDRICAL COORDINATES

The cylindrical harmonic expansion of a sound field at a point in free
space in cylindrical coordinates (R,φ, z) is expressed as [18]:

P(R,φ, z; k) =

∞∑
m=−∞

eimφ
∫ ∞
−∞

Cm(kz, k)Jm(kRR)eikzzdkz

(1)
where Cm(kz, k) is the cylindrical sound field coefficient (SFC) at
the z-component of the wavenumber vector kz and k = ω/c is the
magnitude of the wavenumber vector and c is the speed of sound in
air. Here kR is the component of the wavenumber vector lying in the
x-y plane kR =

√
k2 − k2z .

The sound field components for which kz ≤ k are waves that
propagate through space, while those for which kz > k are called
evanescent wave components that are known to quickly decay to zero
with distance.

The spherical harmonic expansion of a sound field at a point
expressed in spherical coordinates (r, θ, φ) can be written [19]:

P(r, θ, φ; k) =

∞∑
m=−∞

∞∑
n=|m|

βmn (k)jn(kr)Y mn (θ, φ) (2)

where βmn (k) is the spherical harmonic SFC, and Y mn (θ, φ) is a
spherical harmonic function defined [20] as

Y mn (θ, φ) = Λmn P
|m|
n (cos θ)eimφ,

955978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



where

Λmn ,

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)! ,

is a normalization term used to ensure that Y mn (θ, φ) are orthonor-
mal.

Determining Cm(kz, k) from sound pressure measurements
made over a cylinder, multiply both sides of (1) by e−im

′φ/2π and
integrate over azimuth φ ∈ [0, 2π] to determine each phase mode:

P̆m(R, z; k) ,
1

2π

∫ ∞
−∞
P(R,φ, z; k)e−imφ dφ

=

∫ ∞
−∞

Cm(kz, ω)Jm(kRR)eikzzdkz.

Multiply both sides of this equation by e−ikzz and integrate over
height z ∈ (−∞,∞), one can show that:

Cm(kz, ω) =
1

2πJm(kRR)

∫ ∞
−∞
P̆m(R, z; k)e−ikzz dz. (3)

When sound pressure is sampled not in free space but over a
rigid infinite-length cylindrical baffle of radius R = a, Jm(kR) is
replaced with Bm(ka) = −ikaH ′m(ka), where for a negative time
conventionH ′m(·) is the derivative of the Hankel function of the first
kind.

Similarly, the spherical-harmonic SFCs may be determined from
sound pressure measurements made over a sphere. Multiplying both
sides of (2) by Y mn (θ, φ) and integrating over a unit sphere:

βmn (k) =
1

jn(kr)

∫ 2π

0

∫ π

0

P(r, θ, φ; k)[Y mn (θ, φ)]∗

× sin θ dθ dφ. (4)

To be clear, to obtain the cylindrical-harmonic SFCs the integra-
tion is performed over the surface of an infinitely-extending cylinder
where cylinder radius R is constant whilst to obtain the spherical-
harmonic SFCs, the integration in (4) is performed over a spherical
shell where sphere radius r is a constant.

2.1. Representation of a Plane Wave

Consider a plane wave of wave number k = ω/c propagating in
direction ϕ = (ϑ, ϕ). The angles here are expressed in spherical co-
ordinates. The plane wave sound pressure is expressed in cylindrical
coordinates for a negative time convention as [20]:

eikx·ϕ =

∞∑
m=−∞

imeim(φ−ϕ)Jm(κRR)eiκzz (5)

where κR(ϑ) = k sinϑ and κz(ϑ) = k cosϑ. Comparing with
the standard cylindrical harmonic form in (1), the cylindrical SFC
can be identified as consisting of a single wave number component
kz = κz(ϑ). The SFC can be written,

Cm(kz) = ime−imϕδ[kz − κz(ϑ)]. (6)

Wave number z-component kz corresponds to the component of a
far-field plane wave propagating in direction ϑ = cos−1(kz/k).

The spherical-harmonic SFCs for the plane wave are obtained
from the expansion:

eikx·ϕ = 4π

∞∑
m=−∞

∞∑
n=|m|

in[Y mn (ϑ, ϕ)]∗jn(kr)Y mn (θ, φ),

which by comparison with (2), the coefficients are identified as,

βmn = 4π in[Y mn (ϑ, ϕ)]∗. (7)

3. CONVERSION BETWEEN SPHERICAL AND
CYLINDRICAL REPRESENTATIONS

We now derive the transforms to convert between the two SFC rep-
resentations.

3.1. Cylindrical to Spherical

Converting cylindrical SFCs to spherical-harmonic SFCs, we substi-
tute (1) into (4):

βmn (k) =
1

jn(kr)

∫ 2π

0

∫ π

0

∞∑
m=−∞

eimφ
∫ ∞
−∞

Cm(kz, k)

× Jm(kRR)eikzzdkz[Y
m
n (θ, φ)]∗ sin θ dθ dφ

where R = r sin θ and z = r cos θ are both functions of θ. Per-
forming the integral in φ simplifies the expression for βmn (k):

βmn (k) =
2πΛmn
jn(kr)

∫ π

0

∫ ∞
−∞

Cm(kz, k)Jm(kzR)

× eikzzdkz P |m|n (cos θ) sin θ dθ.

It can be seen that βmn (k) may be obtained by integratingCm(kz, k)
with a kernel function:

βmn (k) =

∫ ∞
−∞

Cm(kz, k)T mn (kz, k) dkz, (8)

where

T mn (kz, k) =
2πΛmn
jn(kr)

∫ π

0

Jm(kRR)P |m|n (cos θ)eikzz sin θ dθ

Making the substitution u = cos θ,

T mn (kz, k) =
2πΛmn
jn(kr)

∫ 1

−1

Jm(kRR)P |m|n (u)eikzz du, (9)

where z = ru and R = r
√

1− u2. The physical interpretation of
T mn (kz, k) is that it represents the weight to apply to each sound
field component with wave number z-component kz , to generate the
spherical-harmonic SFC with indices (n,m).

Equation 9 can be simplified by utilizing a result in [21–23]:

inP |m|n

(
kz
k

)
jn(kr) =

im

2

∫ 1

−1

P |m|n (u)Jm(kRR)eikzz du.

This equation implicitly pertains to the components of a sound field
associated with angle of propagation θ = cos−1(kz/k). It is valid
for propagating waves kz < k. It expresses the free-space spherical-
harmonic basis functions jn(kr)Y mn (θ, φ) in terms of a continuous
sum of cylindrical basis functions Jm(kRR)ei(kzz+mφ). Applying
this equation, the transform in (9) simplifies to:

T mn (kz, k) = 4πin−mΛmn P
|m|
n (cos θ)

for kz < k where cos θ = kz/k.
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Fig. 1. Plots of the mode equalization function magnitude |ζmn (kz; ka)| versus frequency for cylinder radii a = 0.1 m and height z = 0.1 m.
The vertical dotted line marks the activation frequency for each sphere mode index n.

By making the approximation that the evanescent waves (for
which kz > k) are negligible, that is, that the sound field consists en-
tirely of propagating wave components, the SFCs can be computed
by truncating the bounds of integration in (8) as:

βmn (k) ≈
∫ k

−k
Cm(kz, k)T mn (kz, k) dkz

= 4πin−mΛmn

∫ k

−k
Cm(kz, k)P |m|n

(
kz
k

)
dkz. (10)

The transform in (10) can easy be shown to hold for the plane wave
SFC in (6). Then because any propagating sound field in an empty
region of space can be represented by a linear sum of plane waves,
the transform holds for all propagating sound fields.

3.2. Spherical to Cylindrical

The transform to convert from spherical-harmonic SFCs to cylindri-
cal SFCs can be derived as follows. The spherical-harmonic SFCs
can be shown to be obtained by an associated Legendre transform
defined in [24] on the cylindrical SFCs. The spherical-to-cylindrical
transform can hence be written in terms of the inverse transform.
Making the substitution u = kz/k in (10),

βmn (k) = 4πkin−mΛmn

∫ 1

−1

Cm (uk, k)P |m|n (u) du. (11)

The associated Legendre transform Tmn {F (u)} is defined as

f(n,m) = Tmn {F (u)} =

∫ 1

−1

Pmn (u)

(1− u2)
m
2
F (u) du,

and the inverse transform is derived in [24] as:

F (u) = (Tmn )−1{f(n,m)}(u)

=

∞∑
n=0

2n+ 1

2

(n−m)!

(n+m)!
f(n,m)(1− u2)

m
2 Pmn (u),

so that F (u) and f(n,m) form a transform pair. We note that for
Λmn as defined above:

2n+ 1

2

(n− |m|)!
(n+ |m|)! = 2π[Λmn ]2.

Setting F (u) = (1− u2)
|m|
2 Cm (uk, k), it can be seen that

βmn (k) = 4πkin−mΛmn T
|m|
n

{
(1− u2)

|m|
2 Cm (uk, k)

}
,

and the inverse transform can immediately be written using the in-
verse associated Legendre transform:

Cm (uk, k) = im−n
1

4πk

(T
|m|
n )−1{βmn (k)/Λmn }

(1− u2)
|m|
2

,

for the propagating wave components kz = uk < k. Substituting in
the inverse transform expression, then

Cm (kz, k) =
im−n

2k

∞∑
n=0

Λmn P
|m|
n

(
kz
k

)
βmn (k). (12)

This transform can be verified for the case of a plane wave, by in-
serting the plane wave SFC in (7) back into (12).

4. MEASURING SOUND FIELD COEFFICIENTS FROM
SOUND PRESSURE

Using the above transforms, the spherical-harmonic SFCs can be de-
termined directly from the sound pressure measured over a cylinder.
More specifically, the SFCs can be expressed in terms of each phase
mode P̆m(z; k). Substituting (3) into (10),

βmn (k) = 4πin−mk

∫ ∞
−∞
P̆m(z; k)ζmn (kz; ka) dz, (13)

where the function ζmn (kz; ka) is:

ζmn (kz; ka) , Λmn

∫ 1

−1

B−1
m (ka

√
1− u2)P |m|n (u) eikz u du

(14)
This function represents the combined effect of the mode equaliza-
tion and cylindrical-to-spherical conversion.

For a hard cylindrical baffle, set Bm(ka) = i/kaH ′m(ka) to
show that

ζmn (kz; ka) = −Λmn

∫ 1

−1

ika
√

1− u2H ′m(ka
√

1− u2)

× P |m|n (u) eikzu du

This function is plotted in Figure 1 for a baffle of radius a = 0.1 m
at height z = 0.1 m upto sphere mode order n = 4.

When measuring phase modes using a cylinder, at low frequen-
cies increasingly aggressive amplification is required for increasing
mode order m. For a baffle of radius a, each mode has an activation
property, switching on at frequency

fm =
mc

2πa
.
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(a) n = 0 (b) n = 1 (c) n = 2 (d) n = 3 (e) n = 4

(f) n = 0 (g) n = 1 (h) n = 2 (i) n = 3 (j) n = 4

Fig. 2. Average squared error in estimated spherical-harmonic SFCs up to 4th order, in dB for (a)-(e) the cylindrical array and (f)-(j) the
spherical array. The sound field is that of a plane wave with elevational angle ϑ and azimuthal angle 0◦.

In Figure 1 this mode-activation property is seen to hold, only in the
sphere mode index n. Activation frequency fn is marked on here.

Using the small argument expression for the Hankel function
[18, p. 119], the mode equalization filter for a plane wave component
at elevational angle ϑ is dominated by the expression

ika sinϑH ′m(ka sinϑ) ≈ −2m+1m!

πεm

1

(ka sinϑ)m
,

where εm = 1 for m = 0 and 2 for m ≥ 1. In Figure 1, at low
frequencies ζmn (kz; ka) is seen to be linear in frequency in the log-
log domain, and a pairing behaviour is seen to exist in the curves. It
can be shown that the frequency dependence of ζmn (kz; ka) at low
frequencies is upper bounded by k−m.

5. MICROPHONE ARRAY PROCESSING

The processing is now presented for determining the spherical-
harmonic SFCs, using the signals sampled over cylindrical micro-
phone array. Space P circular rings of microphones over the surface
of a baffle of radius a, each ring positioned at height at zp with
a ring-to-ring spacing of ∆dq . Each circular array consists of Q
microphones spaced equally in azimuth at angles φq .

The procedure itself is based upon (13):
1. Perform the DFT of microphone signals in azimuthal micro-

phone index q, to calculate each phase mode m:

P̆m(zp; k) =

Q∑
q=1

P(a, φq, zp; k)e−imφq ∆φ.

2. Approximate the transform in (13) with a Riemann sum:

βmn (k) = 4πin−mΛmn

P∑
p=1

P̆m(zp; k)ζ̂mn (kzp; ka)∆dq,

where the functions ζ̂mn (kzp; ka) are regularized according
to:

ζ̂mn (kz; ka) =
ζmn (kz; ka)

λ|ζmn (kz; ka)|2 + 1
,

and λ is a regularization parameter, to prevent noise amplifi-
cation.

6. SIMULATION

The accuracy of the microphone array processing is evaluated, by
determining the error in estimating the SFCs of a plane wave com-
ing from direction (ϑ, ϕ). The performance is simulated using a
cylindrical array and spherical array, both of radius a = 0.1 m:

• 63 microphones evenly spaced over an infinite-length solid
cylinder, with Q = 9 and P = 7, with a ring spacing of
∆q = 0.047 m.

• 64 microphones mounted onto a solid sphere, arranged in a
Fliege geometry [25].

Each microphone array is used to estimate the spherical-harmonic
SFCs for a plane wave propagating in from an azimuthal angle of
0◦ and a range of elevation angles ϑ ∈ [0◦, 90◦]. The SFCs are
measured with the cylindrical array using the algorithm in Section 5,
and with the spherical array using the method in [1]. Each method
uses a regularization parameter λ = 0.001 for mode equalization.
The average squared error in the spherical-harmonic SFCs βmn (k)
for mode index n is computed, using:

Error(k;n) =

∑n
m=−n |β̂

m
n (k)− βmn (k)|2∑n

m=−n |βmn (k)|2 .

This error is plotted in Figure 2. The spherical array performs
equally well at all elevation angles. The cylindrical array performs
best for plane waves arriving from broadsides (ϑ = 90◦) and worst
for plane waves arriving from endfire (ϑ = 0◦). Both arrays have
a similar frequency range of operation for each mode index. The
cylindrical array could be improved by using a least squares design.

7. CONCLUSION

A spatial sound field measured on a cylindrical array can be con-
verted into the spherical-harmonic representation using an associ-
ated Legendre transform. Further, using the inverse transform de-
rived, the sound field measured over a spherical array can be con-
verted into a cylindrical-harmonic representation. When measuring
the spherical-harmonic representation using a cylindrical array, per-
formance losses occur due to the mismatch of cylindrical geometry
with the spherical-harmonic basis functions.
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