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ABSTRACT

Sound event detection is the task of identifying automatically
the presence and temporal boundaries of sound events within
an input audio stream. In the last years, deep learning meth-
ods have established themselves as the state-of-the-art ap-
proach for the task, using binary indicators during training to
denote whether an event is active or inactive. However, such
binary activity indicators do not fully describe the events, and
estimating the envelope of the sounds could provide more
precise modeling of their activity. This paper proposes to es-
timate the amplitude envelopes of target sound event classes
in polyphonic mixtures. For training, we use the amplitude
envelopes of the target sounds, calculated from mixture sig-
nals and, for comparison, from their isolated counterparts.
The model is then used to perform envelope estimation and
sound event detection. Results show that the envelope es-
timation allows good modeling of the sounds activity, with
detection results comparable to current state-of-the art.

Index Terms— Sound event detection, Envelope estima-
tion, Deep Neural Networks

1. INTRODUCTION

Sound event detection (SED) aims to detect presence of dif-
ferent sounds in an audio recording and provide a textual la-
bel, onset and offset times for each [1]. In real-life environ-
ments, where different sound events may overlap, an ideal
SED system should be able to detect all such overlapping
sounds. This case is referred to as polyphonic SED [2], and
was studied in many different tasks: SED in synthetic audio
[3], in real-life audio [3, 4, 5], rare SED [6, 7] and SED us-
ing weakly-labeled data [6, 8, 9]. In all these tasks, sound
events had to be detected in polyphonic mixtures, with either
overlapping target sounds, or significant background present.
Most state of the art methods use deep learning, with convo-
lutional and recurrent neural networks being the most promi-
nent [4, 5, 7, 8].
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The common representation of sound events in current
systems is in the form of binary activity indicators for indi-
vidual sound instances. However, this is a very rough approx-
imation of the natural activity patterns of sounds in real-life.
Often sounds have different non-binary activity patterns, for
example moving sources such as car passing by or vehicle
sirens exhibiting a fade-in/fade-out effect, or variations that
are not accurately explained by the binary activity, such as
footstep sounds on different surfaces.

This paper proposes use of non-binary activity indica-
tors to characterize the temporal activity of sound events:
instead of estimating a point when a sound event becomes ac-
tive/inactive, we propose estimating its amplitude envelope.
Other works using energy envelope information exist, such
as [10] where the envelope is used to extract the significant
parts of the sound before performing classification but, to
the best of our knowledge, there are no published studies
targeting envelope estimation. The use of values other than 0
and 1 as targets for the network in training, changes the setup
from frame-based classification into regression, which in turn
changes the optimization function in the training procedure
to a regression appropriate one. The estimated envelopes are
evaluated by comparing them with the envelopes calculated
from the test data, using mean squared error. Additionally,
the estimated envelopes can be transformed into binary activ-
ity indicators by setting a threshold and mapping the values
above and below into 0 or 1 accordingly; this output is then
evaluated against the reference annotations using F1-score
and error rate.

The paper is organized as follows: Section 2 describes
the approach for envelope estimation, Section 3 describes
the methods and evaluation of the system, while Section 4
presents the dataset used in the experiments, the experimental
results and discussion. Finally, Section 5 presents conclusions
and future work.

2. ENVELOPE ESTIMATION

In real-life scenarios, the input acoustic signal to be analyzed
is usually a polyphonic mixture of target sound events. These
mixtures commonly contain background noise and a number
of overlapping events from different classes. Identifying the
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Fig. 1: The process of obtaining envelopes for the isolated
sounds and the mixtures based on the binary activity indica-
tors.

presence of sound events within the mixtures with binary in-
dicators is sometimes difficult due to the variability of real-
life sounds and the high level of polyphony. For example, a
situation with two overlapping sounds produced by moving
sources (e.g. car passing by) that have first a gradual increase
of energy as they come nearer to the observer and then a grad-
ual decrease as they move away, is hard to describe using only
binary indicators. Instead, we can try to estimate an accurate
representation of the mixture signal, identifying the progres-
sive presence or absence of the events present in it. This rep-
resentation can be a distribution of the acoustic signal in the
continuous domain offering more precise information about
the acoustic events. With this continuous range it is possible
to mark the gradual presence of the target sound activity with
a wider range of values, not only 0s and 1s. For obtaining
such a representation, we propose to estimate the amplitude
envelope of the acoustic signal. We represent the envelope
by calculating the logarithm of the energy of the acoustic sig-
nal in the time domain. The use of the logarithm provides a
smoother representation of the temporal evolution of the en-
ergy, leading to better envelope estimation results.

Learning of sound envelopes is based on training data,
for which we obtain the envelope information as illustrated
in Figure 1. The main assumption of the proposed method
is that given an acoustic signal, if the target sound event is
in the foreground, the energy of the signal within its temporal
vicinity will reflect the activation of this sound. For extracting
the envelope, we consider a mixture signal in which the target
sounds have been annotated with binary activity indicators.
We estimate the amplitude envelope of the energy of the sig-
nal and multiply it with the binary activity of each annotated

sound instance, to obtain the activity information within the
annotated segment; this is further normalized to obtain values
between 0 and 1 for that sound event instance.

In order to investigate the effect of this approximation on
the output of the system, we use synthetic mixtures to train
and evaluate the proposed method. This allows us to access
the precise envelopes by calculating them from the isolated
sound instances, and comparing them with the envelopes cal-
culated from the mixture signal. Figure 1 illustrates this com-
parison. For non-overlapping sounds, such as the sound la-
beled C in the figure, the difference in the resulting envelope
is small, but for the sounds that overlap, the resulting shape
can be dramatically different, as observed for sounds labeled
A and B. Our hypothesis is, however, that envelopes obtained
from mixtures can be successfully used for training.

3. METHODS AND EVALUATION

3.1. System design

The model architecture used in this work is a Convolutional
Recurrent Neural Network (CRNN) based on the system pro-
posed in [4] that ranked first for sound event detection in
real-life audio in DCASE 2017 challenge. The first layers
are CNN, each of them followed by batch normalization and
max-pooling. The output of the CNN is fed to bi-directional
gated recurrent units (GRU), which learn the temporal activity
patterns. The last layers are time-distributed fully-connected
(dense) layers. The output layer has sigmoid activation, so it
can produce multi-label output. The input to the neural net-
work consists of T consecutive time frames of mel-band en-
ergies Nmbe; the dimensions are T = 431 given by the length
of the audio files and Nmbe = 40 number of mel-bands in the
frequency range of 0− 22500Hz.

For training with the envelopes, the optimization loss
function used is the mean squared error (MSE) instead of
the usual binary cross-entropy used for training systems for
classification. The best values for batch size and binariza-
tion threshold used to transform the regression output into
detection are selected using the validation set. The values we
find worked best are batch size of 32 for mixtures, 16 for the
isolated events; for both cases the best binarization threshold
was 0.25. Training was performed using Adam optimizer
[11] with a learning rate of 0.001.

For comparison, we use the same system trained for de-
tection, as in the original work. For the detection case, the
architecture and features stay the same, but the targets are
binary. The optimization function used during training is
binary cross-entropy, and the output values are thresholded
(threshold = 0.5) to obtain the final binary decision. Train-
ing was performed for 500 epochs with a batch size of 32.

The optimal binarization threshold for the envelope es-
timation is smaller than the one used with binary labels,
because we have continuous values that represent the in-
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Fig. 2: Envelopes estimated by the system trained with iso-
lated sound envelopes.

cremental presence of an event, and therefore the model is
expected to predict sound presence using smaller values. Fig-
ure 2 presents one example of ground truth and predicted
output in which the training envelopes are calculated using
the isolated sounds. It can be seen that in some regions the
event presence is marked by low values.

3.2. Evaluation

We evaluate the system output both from the envelope estima-
tion and SED perspectives. Because the envelope estimation
is a regression problem, we evaluate its output using the MSE
between the system output and the data points. In order to
separate the system behavior between the active and inactive
regions of the target sounds, we calculate MSE separately for
these regions, according to the reference annotations. Further-
more, because MSE is difficult to interpret due to arbitrariness
of its scale, we calculate SNR of the estimated envelopes by
dividing the energy of the reference envelopes (Energyref )
to the squared error:

SNR = 10 log10

(
Energyref
Error

)
, (1)

where Error =
∑T

n=1(ref [n] − pred[n])2, calculates the
difference between the reference (ref ) and predicted (pred)
envelopes along time T .

To evaluate SED, we transform the regression output into
binary activity indicators using a threshold: all values above
the selected threshold are considered 1, and all below are con-
sidered 0. This output is further processed by imposing a gap
of at least 0.1 s between active blocks in order to consider
them as different event instances, and imposing a minimum
sound event length of 0.1 s. The final output is then evalu-
ated using segment-based error rate ER and F1-score in 1 s
segments [2].

4. EXPERIMENTAL RESULTS

4.1. Audio data

For this study we use the URBAN-SED dataset created using
Scaper [12]. The dataset contains mixtures of urban sounds
from the UrbanSound8k dataset [13] which is distributed into

Event class MSE SNR [dB]
air conditioner 0.190 2,658
car horn 0.181 3,459
children playing 0.152 3,198
dog bark 0.168 2,609
drilling 0.172 3,328
engine idling 0.148 3,917
gun shot 0.136 2,728
jackhammer 0.077 6,745
siren 0.129 4,187
street music 0.138 3,799

Table 1: Mean squared error of regression output and Signal
to Noise Ratio (SNR) for active regions of the target sounds;
training using mixture envelopes.

10 stratified folds and contains 10 different classes: air condi-
tioner, car horn, children playing, dog bark, drilling, engine
idling, gun shot, jackhammer, siren and street music. The
data is divided into training (6000 soundscapes from folds 1-
6), validation (2000 soundscapes from folds 7-8) and test data
(2000 soundscapes from folds 9-10). The mixtures are gener-
ated by selecting the same background Brownian noise for all
the files. For generating a high variable set of mixtures, a col-
lection of parameters are used for modifying the sound events
before adding them to the mixture (e.g. start time , duration);
for details, please refer to [12].

Given the synthetic generation of the dataset, the annota-
tions are guaranteed to be correct and complete, compared to
the uncertainty of manually annotated datasets. The dataset
also contains sound events such as dog barking and children
playing that have fluctuating envelopes. In addition, this
dataset allows us to verify our hypothesis that the events in
the foreground can be represented using the mixture signal
energy, by comparing the use of envelopes obtained from the
original isolated sounds and from the mixture signal.

4.2. Envelope estimation results

Class-wise results for the envelope estimation regression
problem are presented in Table 1, which include MSE and
SNR from the active regions or the target sounds. Based
on MSE, we can conclude that the system performs in quite
consistent manner, with MSE being within close range for all
classes. However, it is hard to assess what is a good MSE
value. Based on the SNR, we can interpret the scale of the
errors with respect to the reference signal: the jackhammer
and siren class are estimated best, while for air conditioning,
dog bark and gun shot the estimation has the highest error.

We also calculated MSE in the inactive regions of each
sound class, and obtained for all classes value in the range of
0.002-0.009–meaning that the system correctly predicts val-
ues close to zero in the inactive regions of all sound event
classes. If we transform the regression to detection (as eval-
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Fig. 3: F1-score in 1 s segments for different binarization
thresholds; training using envelopes from mixtures

uated in the next subsection), a close inspection of error rates
produced by the system shows that the insertion rate is very
small for all classes, with the vast majority of the errors pro-
duced being deletions. This explains why in the inactive re-
gions the regression output is mostly correct.

4.3. Sound event detection results

For comparison with published work, we choose segment
based ER and F1 score in 1 s segments [2], and present
class-wise results (macro-averaging) as well as instance-wise
(micro-average). Figure 3 presents the class-wise detection
results with different binarization thresholds; the average val-
ues for thresholds 0.125 and 0.25 are very close (61.31 vs
61.42), but based on the validation data, the threshold of 0.25
is selected as the one leading to best ER and F1-score.

Table 2 presents the performance comparison between de-
tection with binary activity and detection through envelope
estimation, with the training envelopes based on the isolated
sounds and on the mixture audio. The system using binary
information was not optimized further, therefore had the 0.5
threshold; we compare it with the best result obtained by the
envelope estimation system, which is for a 0.25 threshold. Re-
sults in Table 2 show that our reference system trained using
binary activity indicators has a higher performance than the
system described and analyzed in [12]. We therefore consider
that our reference system is a reasonably good representation
of current state-of-the art performance

Regression-based detection has a slightly lower average
performance, with the system trained with envelopes cal-
culated from mixtures having lowest performance, but still
few percent units higher than [12]. Class-wise performance
is very similar for sound events that have a more stationary
nature, like air conditioning, engine idling, siren, while for
sounds that have a more dynamic structure, performance of
detection using envelope estimation is smaller. The largest
performance gap of 10% is for gunshot, probably because the
energy envelope has only few values that provide informa-

Event class binary isolated env. mixture env.
air conditioner 48.3 49.2 50.5
car horn 66.0 66.9 63.0
children playing 56.9 56.7 53.9
dog bark 60.3 59.6 55.0
drilling 66.3 63.0 60.5
engine idling 68.2 67.0 67.0
gun shot 71.5 60.7 60.6
jackhammer 78.3 78.6 76.7
siren 69.9 69.0 68.2
street music 59.7 60.5 58.8
average 64.3 63.1 61.4

Table 2: F1-score in 1 s segments for different approaches to
detection; estimated envelopes binarize with 0.25 threshold

System training F1 ER
binary activity 64.7 0.48
envelope from isolated examples 63.6 0.49
envelope from mixture signal 61.8 0.52

Table 3: F1-score and error rate calculated using micro-
averaging (1 s segment-based)

tion, while the binary activities give more weight to the ”tail”
of the sound. Since very short events in the regression output
are filtered out by the postprocessing, it may also be the case
that some detected very short gunshot events are discarded.

For completeness, we evaluate the detection results using
error rate and F1-score as used in DCASE Challenge. The dif-
ference to the evaluation in Table 2 is the overall accumulation
of counts before metric calculation (micro-average) instead
of the class-wise metrics. However, the difference is rather
small because the system performance is consistent between
classes, and the dataset is rather balanced. The presented re-
sults show that estimating the sound envelopes provides SED
results comparable with state-of-the-art performance.

5. CONCLUSIONS AND FUTURE WORK

We have presented an approach for estimating the envelope
of sound events in polyphonic mixtures. Envelope estimation
results evaluated by MSE and SNR show the effectiveness of
the method. In addition, the envelopes as activity descriptors
were transformed into binary activity indicators for estimation
of SED capability of the method. The proposed approach has
comparable performance to a state-of-the-art system trained
using binary labels, therefore we can conclude that estima-
tion of envelopes can provide satisfying performance in SED.
To validate the current conclusions, future work will target
application of the method for real-life recordings, where the
training envelopes are not available from isolated examples,
but can be calculated only based on the mixture and corre-
sponding annotations.

938



6. REFERENCES
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