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ABSTRACT

Acoustic scene generation (ASG) is a task to generate wave-
forms for acoustic scenes. ASG can be used to generate audio
scenes for movies and computer games. Recently, neural net-
works such as SampleRNN have been used for speech and
music generation. However, ASG is more challenging due to
its wide variety. In addition, evaluating a generative model is
also difficult. In this paper, we propose to use a conditional
SampleRNN model to generate acoustic scenes conditioned on
the input classes. We also propose objective criteria to evaluate
the quality and diversity of the generated samples based on
classification accuracy. The experiments on the DCASE 2016
Task 1 acoustic scene data show that with the generated audio
samples, a classification accuracy of 65.5% can be achieved
compared to samples generated by a random model of 6.7%
and samples from real recording of 83.1%. The performance
of a classifier trained only on generated samples achieves an
accuracy of 51.3%, as opposed to an accuracy of 6.7% with
samples generated by a random model.

Index Terms— acoustic scene generation, SampleRNN,
recurrent neural network, generative model

1. INTRODUCTION

An acoustic scene is a formation of sounds that characterizes
a particular place. For instance, the sound of a train stopping
could indicate a train station, and the sound of typing could
mean that it is an office environment. Often, an acoustic scene
is identified by the combination of several different sounds.
Not only does it depend on what the sound sources are, but
also on characteristics such as loudness and reverberation.

Generating acoustic scenes has a number of applications,
such as sound production for movies and computer games
[1]. Despite the availability of several datasets for acoustic
scenes, the datasets are usually only of hours in total length
[2, 3, 4]. Generating acoustic scenes would help to expand the
datasets. Similarly, one could use the additional data for other
audio classification tasks by incorporating the generated audio
with other sounds. For example, adding a background scene
to speech could provide a greater diversity of examples for
speech recognition. This would allow content creators to use a

greater variety of acoustic scenes without having to necessarily
record all of them.

Recently, neural network methods such as WaveNet [5]
and SampleRNN [6] have been used to generate raw wave-
forms. WaveNet and SampleRNN are autoregressive models.
WaveNet is based on a convolutional neural network (CNN)
that is the audio equivalent of the PixelCNN architecture used
in computer vision [7, 8]. SampleRNN is based on a num-
ber of recurrent neural networks (RNNs) that correspond to
a hierarchy of different temporal resolutions. The fact that
it explicitly captures multiple resolutions gives SampleRNN
an advantage in generation time over WaveNet in modeling
music and speech [6]. Other generative models include vari-
ational autoencoders (VAEs) [9] and generative adversarial
networks (GANs) [10]. Conditional SampleRNN is used in
speech recognition in [11]. Other works for scene generation
includes [12]. However, there is not much work in generating
a variety of acoustic scenes.

Evaluation of a generative model is important in evaluating
the quality and diversity of the generated samples. Previous
work used the likelihood of the generated samples on eval-
uation data to evaluate the generation quality [5]. However,
likelihood is often not positively related with the generation
quality [13]. For example, a successfully generated white noise
acoustic scene has high entropy and low likelihood. Subjective
preference scores are widely used to evaluate generation qual-
ity [5], but they are time-consuming to obtain and the results
may not be reproducible. Recently, objective criteria such as
inception scores [14] have been used to evaluate the quality
and diversity of generated samples. However, inception scores
only evaluate the class diversity of the generated samples and
not the diversity of samples within a certain class.

In this paper, we propose to use a conditional SampleRNN
model to generate acoustic scenes conditioned on different
acoustic classes. In addition, we propose an evaluation cri-
terion inspired by inception scores to evaluate both the qual-
ity and variability of the generated samples. This paper is
organized as follows: Section 2 introduces the conditional
SampleRNN method for generating acoustic scenes. Section
3 introduces the proposed evaluation metric and the proposed
evaluation criteria. Section 4 presents experimental results.
Section 5 concludes and forecasts future work.
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Fig. 1. A two-tier conditional SampleRNN model.

2. AUDIO GENERATION MODEL

Generative models including WaveNet [5] and SampleRNN
[6] generate the probability of a sequence of samples X =
{x1, x2, ..., xT } as the product of the probabilities of each
sample conditioned on all previous samples:

p(X) =
T−1∏
t=0

p(xt+1|x1, ..., xt). (1)

Modeling Equation (1) is difficult when the sequence length T
is long. WaveNet [5] models Equation (1) by a stack of dilated
convolutional layers. The model outputs the value probability
of the next sample. SampleRNN [6] combines the long time
and short time dependency information of samples and shows
better generation quality of music and speech than WaveNet
[6]. In this paper we adopt SampleRNN as our basic model.

2.1. Conditional SampleRNN

SampleRNN consists of several tiers to extract information
from different levels [6]. Fig. 1 shows the framework of
a two-tier SampleRNN. On the top tier (Tier 2), the audio
samples are split into non-overlapping frames. For example,
each frame consists of 16 audio samples. These frames are
input to a RNN to learn long dependency information from
previous samples. Compared with applying a conventional
RNN on the waveform samples directly, SampleRNN reduces
the depth of a conventional RNN by a factor of the frame
size (shown in Fig. 1). Thus SampleRNN faster to train [6]

because the truncated back propagation through time (BPTT).
The outputs of the RNN in Tier 2 are upsampled by a factor
of the number of samples in a frame and are combined with
the information from Tier 1. In Tier 1, audio samples are input
to a convolutional layer to capture the short time dependency
of adjacent samples. The output of the convolutional layer is
added with the output of Tier 1 to utilize both long time and
short time information. Finally, a multilayer perceptron (MLP)
with fully connected layers is applied to predict the probability
of the output audio samples in sample level (Fig. 1).

A conventional SampleRNN is not conditioned on any
class. For acoustic scene generation, the aim is to design a
generative model that is able to generate audio samples for
different acoustic scenes. We propose to use a conditional
SampleRNN [11] to generate a variety acoustic scenes. We
encode the class information to one-hot encoding z = {0, 1}K ,
where K is the number of acoustic scene classes. Then the
one-hot encoding is copied to frames as additional information
to the input of the sampleRNN model (Fig. 1).

The mathematical formulation of a conditional two tiers
sampleRNN is defined as follows. We use t and j to denote the
index of waveform samples and frames, respectively. In Tier
2, an input sequence X is split into non-overlapped frames
Xj = {x(j−1)×M+1 : j×M}, where M is the frame size. The
two tiers SampleRNN model can be written as:

uj =fR(WXj + V z + b)

vj =fU(u
j)

q =φ(Q ∗ x+ c)

yt =fmlp(v
t + qt).

(2)

The function fR denotes the recurrent connection in Tier 2 to
capture the long time dependency between frames. Symbols
W ∈ RH×M and V ∈ RH×K are embedding mappings for
the input and conditional class, where H denotes the number
of hidden units. The function fU upsamples the output of the
recurrent layer in Tier 2 by a factor of the frame size M . The
third line of Equation (2) corresponds to the convolution of the
input samples in Tier 1, where Q ∈ RH×M is a convolution
kernel to model the short time dependency of adjacent M sam-
ples. The output from Tier 2 and Tier 1 are summed followed
by a multilayer perceptron fmlp with fully connected layers to
predict the output samples. In generation, by initializing the
starting input sequence as 0 and conditioned on one-hot class
condition z, a generated waveform xgen will be obtained by
applying equation (2) recursively. We denote the generation
function as xgen = g(z).

3. EVALUATION

Evaluating a generative model is not trivial because the training
loss is not usually related with the generation quality [13]. For
example, a successfully generated white noise acoustic scene
has high entropy and low likelihood. Subjective preference
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scores are used to evaluate speech generation quality in [5, 6]
but they are time consuming to obtain and the result may not
be reproducible. Inception score [14] is an objective criterion
defined as exp(Ex[KL(p(y|x) ‖ p(y))]), where p(·) is a pre-
trained classifier. The term p(y|x) indicates generation quality.
The term p(y) indicates the generation diversity among classes
but does not indicate the diversity in a given class. Therefore
inception score is not suitable for evaluating the diversity of
generated samples conditioned on a specific class.

3.1. Generation quality

Similar to the inception score, we start with training a classifier
freal on a set of real acoustic scene data xreal. Then the trained
classifier freal is used to classify a set of the generated data
xgen = g(z). As freal is trained on real data, thus it is able to
distinguish different sound classes. If the generated samples
are of high quality, then freal(xgen) will have high accuracy in
predicting xgen as class z. If the generated samples are of low
quality such as random noise, freal tends to predict xgen as a
random class.

3.2. Generation diversity

To evaluate the intra-class generation diversity, we train a
classifier fgen on a set of the generated data xgen = g(z) where
the set contains generated samples conditioned on all classes.
Then the trained fgen is used to classify the real data xreal. If
the mode of the generated samples collapses, that is, there is
little diversity of the generated samples then fgen will have
low classification accuracy on xreal. On the other hand, if the
generation diversity is high and the generated data distribution
is close to the real data distribution then the classification
performance of fgen should approach freal.

4. EXPERIMENTS

4.1. Dataset

We evaluate the proposed conditional SampleRNN genera-
tive model on the DCASE 2016 Task 1 acoustic scene dataset
consists of 15 acoustic scenes. Each audio recording has a
duration of 30 seconds. Following [6], we split the training
audio recordings into 8-second audio clips. Each 8-second
audio clip inherits the label from the original 30-second au-
dio recording. This results in 5728 8-second audio clips for
training, where 512 8-second audio clips are held out for vali-
dation. The generated samples and source code are available
on GitHub1.

4.2. Model

A two-tier conditional SampleRNN is applied as the generative
model (Fig. 1). In Tier 2, we set the frame size to 16 and the

1https://github.com/qiuqiangkong/sampleRNN_acoustic_scene_generation
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Fig. 2. Confusion matrix of the classification accuracy on the
generated audio samples.

Table 1. Classification accuracy on the evaluation, conditional
SampleRNN generated and randomly generated waveforms.

Evaluation Generated Random

Accuracy 83.1% 65.5% 6.7%

number of frames to 64, resulting in 1024 samples used for
truncated BPTT. Long time dependency information is used
to initialize the states of the RNN in Tier 2. We model the
RNN with a three-layer gated recurrent unit (GRU) [15] with
1024 hidden units. The upsampling layer has an upsample
factor of 16, which is the same as the frame size. In Tier 1,
the frame size of the receptive field of the convolutional layer
is 16. The output of the convolutional layer and the output
of Tier 2 are added, followed by a multilayer perceptron with
two fully connected layers with 1024 hidden units to predict
the output samples. During training, the Adam optimizer [16]
with a learning rate of 0.001 is used. The model is trained
for 200 000 iterations, which takes two days on a TITAN XP
single-GPU card.

We apply a 4-layer CNN as the classification model [17].
The CNN consists of four layers with 32, 64, 128 and 256
feature maps in each layer. Global average pooling is applied
on the final feature map followed by a fully-connected layer
with a softmax nonlinearity to predict the presence probability
of acoustic scene classes. A dropout [18] rate of 0.5 is applied
after every convolutional layer to prevent the system from
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Fig. 3. Classification accuracy on the evaluation data using
the classification model trained on generated samples only.

overfitting. Similar to the generative conditional SampleRNN
model, the classification model is trained using Adam with a
learning rate of 0.001 following [17].

4.3. Generation quality

We generate 2000 audio samples for each acoustic scene, re-
sulting in 30 000 generated audio samples in total. Table 1
shows that using the classifier freal trained on the training
data a classification accuracy of 83.1%, 65.5% and 6.7% is
obtained on the evaluation set, conditional SampleRNN gen-
erated waveforms and random waveforms, respectively. Fig.
2 shows the confusion matrix of the classification result on
the generated audio samples. Audio classes such as “car” and
“office” have good generation quality. The results indicate that
a majority of the generated audio waveforms are indistinguish-
able from the real audio waveforms because freal classifies
these generated waveforms correctly. Compared with acoustic
scene generation with replaying the training waveforms, the
SampleRNN can generate infinite acoustic scenes.

4.4. Generation diversity

A good generative model should have diversity of the gener-
ated waveforms [14], i.e. the distribution of the generated data
should be close to that of the real data, and should not collapse
to a single mode. To evaluate the generation diversity, we train
classification models fgen on the generated samples only. Then,

Table 2. Classification accuracy on the training and evaluation
audio samples using the fgen.

Gen. samples Train Evaluate

1 0.176 0.146
2 0.296 0.069
5 0.433 0.177
10 0.483 0.246
20 0.563 0.274
50 0.590 0.308
100 0.617 0.249
200 0.668 0.397
500 0.688 0.487
1000 0.694 0.495
2000 0.688 0.513

fgen is used to classify the training and evaluation waveforms.
In our experiments, the number of generated samples per class
is ranged from 1 to 2000 for training fgen. Table 2 shows
the classification accuracy on the training and evaluation data
with fgen trained on different number of generated samples.
The classification accuracy on the training data increases from
0.176 to 0.694 with 1 to 1000 generated audio samples per
class for training. The classification accuracy on the evaluation
data increases from 0.146 to 0.513 with 1 to 2000 generated
audio samples per class for training. Fig. 3 shows the con-
fusion matrix of the accuracy of fgen on the evaluation data.
Classes such as “beach” and “car” have high classification
accuracy indicating their high generation diversity.

5. CONCLUSION

We have presented a conditional SampleRNN model for gen-
erating waveforms for acoustic scenes. The generative model
can be conditioned on different acoustic scenes. We propose
to evaluate the generation quality using a classifier trained
on the real waveforms and evaluate the generation diversity
using a classifier trained on generated waveforms. Using the
classifier trained on real waveforms, an accuracy of 65.5%
is achieved on the generated waveforms, indicating the high
quality of the generated samples. Using the classifier trained
on generated waveforms, the performance improves with the
number of generated waveforms. This indicates that the gen-
erated waveforms are different thus have a good diversity. In
future, we will investigate acoustic scene generation with more
autoregressive models.
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