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ABSTRACT

For conventional single-channel speech enhancement based on noise
power spectrum, the speech gain function, which suppresses back-
ground noise at each time-frequency bin, is calculated by prior
signal-to-noise-ratio (SNR). Hence, accurate prior SNR estimation
is paramount for successful noise suppression. Accordingly, we
have proposed a single-channel approach to combine conventional
and deep learning techniques for speech enhancement and automat-
ic speech recognition (ASR) recently. However, the combination
process is at the testing stage, which is time-consuming with a com-
plicated procedure. In this study, the gain function of classic speech
enhancement will be utilized to optimize the ideal ratio mask based
deep neural network (DNN-IRM) at the training stage, denoted
as GF-DNN-IRM. And at the testing stage, the estimated IRM by
GF-DNN-IRM model is directly used to generate enhanced speech
without involving the conventional speech enhancement process.
In addition, DNNs with less parameters in the causal processing
mode are also discussed. Experiments of the CHiME-4 challenge
task show that our proposed algorithm can achieve a relative word
error rate reduction of 6.57% on RealData test set comparing to
unprocessed speech without acoustic model retraining in causal
mode, while the traditional DNN-IRM method fails to improve ASR
performance in this case.

Index Terms— statistical speech enhancement, ideal ratio
mask, deep learning, gain function, speech recognition

1. INTRODUCTION

Single channel speech enhancement is a widely researched problem
in signal processing, which aims to suppress the background noise
and interference from the observed noisy speech to improve the per-
ceptual quality and the performance of automatic speech recogni-
tion (ASR) [1]. The problem of speech enhancement has been an
attractive area of research in statistical signal processing for a rather
long time, and short-time Fourier transform (STFT) based methods
achieve relatively good performance in this field [2]. It is appro-
priate to further categorize this class of speech enhancement algo-
rithms into the sub-categories of spectral subtraction [3], Wiener fil-
tering [4], minimum mean-square error (MMSE) estimator [5], and
the optimally modified log-spectral amplitude (OM-LSA) speech es-
timator [6]. The Wiener filtering category is restricted by linearity,
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and the spectral subtraction approaches are based on largely sim-
plified mathematical expressions. For MMSE and OM-LSA, they
are strictly optimal given a set of initial assumptions and optimality
criteria, which can be classified into statistical approaches. These
conventional methods are adaptive to the test signal, which is in gen-
eral not robust enough in adverse environments, particularly when
there are non-stationary noises.

Recently, a supervised learning framework has been proposed,
where a deep neural network (DNN) is trained to map from input
features to the output targets. In [7], a regression DNN is adopt-
ed using mapping-based method directly predicting the log-power
spectra (LPS) of clean speech from LPS of the noisy speech. In [8],
the new architecture with two outputs is proposed to estimate the
target speech and interference simultaneously. In [9], the DNN is
adopted to estimate the ideal masks including the ideal binary mask
(IBM) [10] of one time-frequency (T-F) bin and ideal ratio mask
(IRM) [11] of one T-F bin. And [9] also demonstrates that the IR-
M as the target leads to a better speech enhancement performance
than IBM. The above methods are based on the DNN model using
the context information. More complicated neural network archi-
tectures, such as convolutional neural network (CNN) [12] and long
short-term memory (LSTM) based recurrent neural network (RN-
N) [13], with an expense of higher computational complexities and
run-time latencies than the conventional DNN are applied to speech
enhancement. In real applications, one key factor is to design a neu-
ral network architecture to simultaneously achieve good evaluation
metrics and maintain a low-latency real-time capability.

In this study, the classic gain function of statistical speech en-
hancement is utilized to optimize the parameters of DNN based on
IRM (DNN-IRM), denoted as GF-DNN-IRM. This work is compre-
hensively extended from our recent paper [14] with new contribu-
tions listed as follows. First, the combination process of conven-
tional speech enhancement and deep learning methods at the testing
stage has been transferred to the training stage, which simplifies the
decoding process and reduces the computation complexity. Second,
DNN with less parameters in the causal processing mode is also in-
vestigated. The experiments on the CHiME-4 RealData test set show
that the proposed approach can achieve a relative word error rate (W-
ER) reduction of 6.57% comparing to unprocessed speech without
acoustic model retraining in the causal mode, while the traditional
DNN-IRM method fails to improve ASR performance in this case.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present an overview of the related work. Section 3 gives
detailed description of our proposed approach. Section 4 shows the
ASR performance of our proposed approach on the CHiME-4 chal-
lenge. Finally, we summarize our findings in Section 5.
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2. RELATED WORK

2.1. IMCRA approach

Fig. 1. Improved speech presence probability (ISPP) [14].

For the conventional speech enhancement methods, e.g, im-
proved minima controlled recursive averaging (IMCRA) [15], the
key point is the accurate estimation of the posterior signal-to-noise-
ratio (SNR), denoted as γ(k, l), and prior SNR, denoted as ξ(k, l),
which are defined as follows:

ξ(k, l) , λs(k, l)

λd(k, l)
(1)

γ(k, l) , |X(k, l)|2

λd(k, l)
(2)

where λs(k, l) = E[|S(k, l)|2|H1(k, l)] and λd(k, l) = E[|D(k, l)]
denote the variances of desired speech and noise at the T-F bin (k,l),
respectively. S(k, l), D(k, l) and X(k, l) denote the STFT of
desired speech signal, noise signal and noisy speech signal, respec-
tively. H1(k, l) indicates speech presence in the k-th frequency bin
of the l-th frame. The prior SNR is estimated as follows:

ξ(k, l) = αG2(k, l − 1)γ(k, l − 1)

+ (1− α)max{γ(k, l − 1)− 1, 0}
(3)

where α is a weighting factor that controls the tradeoff between noise
reduction and speech distortion [5,16]. The suppression rule is based
on the gain function of the prior and posterior SNRs:

G(k, l) = g(γ(k, l); ξ(k, l)) (4)

More details can be found in [15].

2.2. Improved speech presence probability based approach

The conventional speech enhancement approach is adaptive to the
test signal and with a relatively simple implementation, which is
in general not robust enough in adverse environments, particular-
ly when there are non-stationary noises. On the other hand, DNN-
based regression model trained by a large amount of data can sup-
press non-stationary noises well, but its generalization ability is lim-
ited. When there exists mismatch between training data and test data,

the robustness of DNN-based method is not good. Inspired by the
above analysis, improved speech presence probability (ISPP) based
approach was proposed in [14] for speech enhancement, as shown in
Fig. 1.

3. THE PROPOSED APPROACH

3.1. DNN-based IRM estimation

The architecture of the DNN-based IRM estimation, which can be
trained to learn the complex transformation from the noisy LPS fea-
tures to the corresponding IRMs, denoted as DNN-IRM as shown in
Fig. 1. Acoustic context information along both the time axis (with
multiple neighboring frames) and frequency axis (with full frequen-
cy bins) can be fully exploited by the DNN to obtain a good mask
estimate in adverse environments, which is strongly complementary
with the conventional IMCRA-based approach to retain robustness.
The estimated IRMs are restricted to be in the range between zero
and one, which can be directly used to represent the speech pres-
ence probability at each T-F unit. The IRM as the learning target is
defined as:

Mref(k, l) = SPS(k, l)/ [SPS(k, l) +DPS(k, l)] , (5)

where SPS(k, l) and DPS(k, l) are clean and noise versions of pow-
er spectral features at the T-F unit (k, l). Because the training of
this DNN-IRM model requires a large amount of time-synchronized
stereo-data with the IRM and LPS of enhanced training data pairs,
the training data are synthesized by adding different types of noise
signals to the clean speech utterances with different SNR levels.
Note that the specified SNR levels in the training stage are expected
to address the problem of SNR variation in the testing stage with real
speech data. To train the DNN-IRM model with a random initializa-
tion, supervised fine-tuning is used to minimize the mean squared
error (MSE) between the DNN-IRM output M̂DNN(k, l) and the ref-
erence IRM Mref(k, l), which is defined as

EDNN =
∑
k,l

(M̂DNN(k, l)−Mref(k, l))
2. (6)

This MSE is optimized using the stochastic gradient descent based
back-propagation method in a mini-batch mode.

3.2. ISPP estimation using DNN-IRM

The conventional speech enhancement also retains much back-
ground noise and speech in adverse environments simultaneously.
The estimated IRM based on DNN-IRM can give a realizable es-
timation to non-speech segmentation, but also exits mismatch be-
tween the training and testing data, which will destroy the target
speech. The two approaches are complementary, and the estimated
M̂DNN(k, l) can be combined with G(k, l) to yield an improved
mask M̂ISPP(k, l), i.e.,

M̂ISPP(k, l) = δM̂DNN(k, l) + (1− δ)G(k, l) (7)

where δ was set to 0.5.
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Fig. 2. The proposed GF-DNN-IRM approach.

3.3. DNN training based on classic gain function

In Section 3.2, we give a simple description of the proposed ISPP
approach [14] at the testing stage. And in this section, the combi-
nation of two types of approaches is directly utilized to optimize the
IRM estimation based on DNN at the training stage. In this study,
DNN-IRM based on classic gain function training is illustrated in
Fig. 2. [17] also demonstrated that the directly mapping from the
noisy features to clean features for DNN regression model is not the
best strategy. For the conventional DNN-IRM training, the reference
IRM is obtained according to Eq. (5), which is based on the clean
speech. In this study, the estimated ISPP features by gain function
are directly adopted as the learning target to improve the generaliza-
tion of DNN model.

To train the GF-DNN-IRM model with a random initialization,
supervised fine-tuning is used to minimize MSE between the DNN-
IRM output M̂GF-DNN(k, l) and the ISPP M̂ISPP(k, l), which is de-
fined as

EGF-DNN =
∑
k,l

(M̂GF-DNN(k, l)− M̂ISPP(k, l))
2. (8)

This MSE is also optimized using the stochastic gradient descent
based back-propagation method in a mini-batch mode. Please note
that M̂ISPP(k, l) is calculated according to Eq. (7) as illustrated in
Fig. 2. One advantage of GF-DNN-IRM model training is the stereo-
data pairs is not necessary with the well-trained DNN-IRM model.
Our proposed training procedure of GF-DNN-IRM is summarized
as in Algorithm 1:

Algorithm 1 DNN training based on gain function (GF-DNN-IRM)
Input: Noisy training data and well-trained DNN-IRM model
Output: The parameter set of GF-DNN-IRM model

1: for each mini-batch do
2: for each T-F bin (k,l) in one mini-batch do
3: Compute a posterior SNR γ(k, l) using Eq. (2), a prior

SNR ξ(k, l) using Eq. (1), and obtain G(k, l) via Eq. (4).
4: Compute M̂DNN(k, l) using DNN-IRM model.
5: Compute the learning target of GF-DNN-IRM model

M̂ISPP(k, l) with M̂DNN(k, l) and G(k, l) using Eq. (7).
6: Accumulate the corresponding gradients based on Eq. (8).
7: end for
8: Update GF-DNN-IRM using stochastic gradient descent.
9: end for

4. EXPERIMENTAL EVALUATION

4.1. Data corpus

We present the experimental evaluation of our framework in the
CHiME-4 task [18], which was designed to study real-world AS-
R scenarios where a person is talking to a mobile tablet device e-
quipped with 6 microphones in a variety of adverse environments.
Four conditions were selected: café (CAF), street junction (STR),
public transport (BUS), and pedestrian area (PED). For each case, t-
wo types of noisy speech data were provided: RealData and SimDa-
ta. RealData was collected from talkers reading the same sentences
from the WSJ0 corpus [19] in the four conditions. SimData, on the
other hand, was constructed by mixing clean utterances with envi-
ronmental noise recordings using the techniques described in [20].
CHiME-4 offers three tasks (1-channel, 2-channel, and 6-channel)
with different testing scenarios. In this paper, we focus only on the
1-channel case to make the paper concise. The readers can refer
to [18] for more detailed information regarding to CHiME-4.

4.2. Implementation details

For front-end configurations, waveform was sampled at 16 kHz, and
the corresponding frame length was set to 512 samples (or 32 m-
sec) with a frame shift of 128 samples. A short-time Fourier trans-
form (STFT) analysis was used to compute the DFT of each over-
lapping windowed frame. To train the DNN-IRM model, the 257-
dimensional feature vector was used for IRM target. The PyTorch
was used for neural network training [21]. The learning rate for the
first 15 epochs was initialized as 0.01, then reduced to 0.001 for
the last 15 epochs. To build the training data, clean speech was de-
rived from the WSJ0 corpus [19], and the 4 noise types provided
by CHiME-4 in [22] were selected as our noise database. 7138 ut-
terances (about 12 hours of reading style speech) from 83 speakers,
were corrupted with the above mentioned 4 noise types at three SNR
levels (-5dB, 0dB and 5dB) to build a 36-hour training set, consisting
of pairs of clean speech and noisy speech utterances.

For the back-end configurations, the baseline ASR recognition
system was trained on the speech recognition toolkit Kaldi [23]. For
time delay neural network (TDNN) based acoustic model training,
backstitch optimization method was used. The decoding was based
on 3-gram language models with explicit pronunciation and silence
probability modeling. The model was re-scored by a 5-gram lan-
guage model first. Then the Kaldi-RNNLM was used for training
the RNN language model, and n-best re-scoring was used to im-
prove performance. The model was trained according to the scripts
downloaded from the official GitHub website1.

4.3. Experimental results

Table 1 shows the comparison of GF-DNN-IRM using different set-
tings of (τ,NL, NU ) on the test sets of RealData. τ,NL, NU de-
noted the number of frames in the input layer, the number of hidden
layers and the number of hidden units, respectively, and there are
three blocks in Table 1. The results in Table 1 were obtained by the
Kaldi tools without acoustic model retraining.

For the first block of Table 1, “Noisy” denoted the original
noisy speech randomly selected from channel 1-6 (except channel
2), namely 1-channel case. “Baseline” denoted the method proved
by Kaldi tools and the enhanced speech was obtained by BLSTM-
IRM model [24]. “IMCRA” denoted the enhanced speech was

1https://github.com/kaldi-asr/kaldi/tree/master/egs/chime4
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Table 1. WER (%) comparison of GF-DNN-IRM models us-
ing different settings of (τ,NL, NU ) on the test sets of RealData.
τ,NL, NU denoted the number of frames in the input layer, the num-
ber of hidden layers and the number of hidden units, respectively.

Enhancement (τ,NL, NU ) BUS CAF PED STR AVG

Noisy 21.03 13.90 11.29 9.21 13.85
Baseline [24] 32.34 24.08 18.91 14.57 22.47
IMCRA [15] 26.68 18.96 13.77 10.55 17.49

DNN-IRM
(1,3,2048) 23.67 18.58 14.44 10.61 16.82
(5,3,2048) 23.41 18.71 14.37 10.29 16.69
(7,3,2048) 23.54 17.48 13.32 10.16 16.12

GF-DNN-IRM
(1,3,2048) 19.26 13.26 10.76 8.48 12.94
(5,3,2048) 19.36 13.12 10.65 8.35 12.87
(7,3,2048) 19.50 13.00 10.46 8.24 12.80

obtained by IMCRA-based speech enhancement [15]. We could
observe that the IRM estimated by “Baseline” significantly degrad-
ed the ASR performance, comparing to “Noisy”. For example, the
average WER of “Noisy” was 13.85%, while the average WER
of “Baseline” was 22.47%, respectively. “IMCRA”, namely clas-
sic speech enhancement approach, also failed to improve the ASR
performance.

For the second block of Table 1, “DNN-IRM” denoted the en-
hanced speech was obtained by the estimated IRM using different
DNN settings of (τ,NL, NU ). The setting of input frame number τ
as the acoustic context determined the hard latency of deep model-
s. τ=1 denoted the causal mode where only the central frame was
adopted with no hard latency. τ=5 and 7 employed 2 and 3 histo-
ry/future frames respectively. For DNN-IRM model, the acoustic
context was quite important for recognition performance. For exam-
ple, “DNN-IRM(7,3,2048)” outperformed “DNN-IRM(1,3,2048)”,
a relative WER reduction of 4.16%. But all DNN-IRM results were
still worse than those of “Noisy”.

For the last block, “GF-DNN-IRM” denoted the enhanced
speech was obtained by the estimated IRM using GF-DNN-IRM
models. We could observe that the IRM estimated by GF-DNN-
IRM model could directly improve the ASR performance without
acoustic model retraining. For example, “GF-DNN-IRM(7,3,2048)”
improved the ASR performance with a relative WER reduction
of 7.58%, comparing to “Noisy”. In the causal mode, our pro-
posed algorithm, “GF-DNN-IRM(1,3,2048)”, achieved a relative
WER reduction of 6.57%, comparing to “Noisy”. Finally, the
performance gaps among GF-DNN-IRM models with different ar-
chitectures were smaller than those among DNN-IRM models. For
example, a relative WER reduction of 4.16% was yielded from
“DNN-IRM(1,3,2048)” to “DNN-IRM(7,3,2048)” while only a
relative WER reduction of 1.08% was generated from “GF-DNN-
IRM(1,3,2048)” to “GF-DNN-IRM(7,3,2048)”.

Fig. 3 gives an utterance example from the RealData test set of
CHiME-4 to illustrate the motivation of using classic single-channel
speech enhancement algorithm to optimize the DNN-based IRM es-
timation at the training stage. Fig. 3 a) and b) plot the spectrogram-
s from channel 0 (the close-talking microphone to record the ref-
erence “clean” speech) and one corresponding channel with noisy
speech. Fig. 3 c) and d) plot the IRMs estimated by IMCRA and
DNN-IRM methods. Comparing these two plots, we observed that
the estimated IRM by the DNN model might misclassify the T-F re-
gions dominated by speech to non-speech/noise, while the estimated
IRM by the IMCRA method could alleviate this problem, where the
values of IRM estimated by the IMCRA method were much higher
than those of DNN model at the circled region marked in the black

Fig. 3. The comparison of estimated masks from different approach-
es for an utterance of CHiME-4 RealData test set.

rectangle. But we also could find that the values of IRM estimat-
ed by the IMCRA method were noncontinuous among neighbouring
speech frames. Finally, in Fig. 3 e), the IRMs estimated by GF-
DNN-IRM model could fully utilize the complementarity of IMCRA
and DNN-IRM based approaches, namely preserving better speech
regions than DNN-IRM and yielding better continuity than IMCRA.

5. CONCLUSION

In this work we proposed a novel architecture for single-channel
speech enhancement utilizing the gain function of classic speech en-
hancement to guide the DNN-IRM training, denoted as GF-DNN-
IRM. As evaluation parameters we used speech recognizer perfor-
mance, under the assumption that the speech recognizer is a black
box without retraining of acoustic model. Experiments demonstrate
that the IRM estimated by the DNN-IRM model is not effective
for ASR performance, while the IRM estimated by GF-DNN-IRM
model can directly improve the ASR performance without acoustic
model retraining. For example, “GF-DNN-IRM(7,3,2048)” (WER
of 12.80%) can improve the ASR performance with a relative WER
reduction of 7.58%, compared to “Noisy” (WER of 13.85%), while
“DNN-IRM(7,3,2048)” are 16.82%. In the future, we will explore
how to utilize more powerful neural network to optimize the training
of neural networks with less parameters.
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