
CROSS EVALUATION OF SPEECH ENHANCEMENT METHODS UNDER DIFFERENT NOISE CONDITIONS

Lara Nahma, Pei Chee Yong, Hai Huyen Dam, Sven Nordholm

Curtin University, Kent Street, Bentley, WA 6102, Australia
l.alibreesm@postgrad.curtin.edu.au

peichee.yong@nuheara.com { H.Dam, S.Nordholm }@curtin.edu.au

ABSTRACT
In this paper, we present a cross evaluation of different a priori SNR
estimation methods as well as different time-frequency analysis
processing using a subjective listening test. The noisy signal is
corrupted by different types of background noise i.e. babble and
pink, and varying levels of input SNR (0 dB and 10 dB) . The
signals are processed using Short Time Fourier Transform (STFT)
or Critical Band (CB) processing. After estimating the clean speech
signal, it was presented to 10 participants for evaluation using a
subjective listening test according to (ITU-TP.835) methodology.
The results demonstrate that the participants preferred the speech
signal processed using CB for low SNR levels and non-stationary
background noise, which means that critical band based frequency
scale is more useful in adverse noisy conditions.

Index Terms—speech enhancement, noise reduction, a priori SNR
estimation, perceptually motivated speech enhancement, listening test.

I. INTRODUCTION

The main challenge in single channel speech enhancement is
to find the optimal denoising filter to reduce the background
noise while preserving the speech components. In other words,
the designed filter has to control the trade off between the noise
reduction and speech distortion. Apart from that, it is also necessary
to consider the quality of noise after suppression, since unnatural
sounding background noise known as musical noise is bothersome
for the listeners [1].

An important component in the speech enhancement system is
the a priori SNR estimation [2], which involves an estimate of the
clean speech and noise power spectral density (PSD). The state
of the art decision directed (DD) based a priori SNR estimator is
proposed by Ephraim and Malah [3]. This approach has the ability
to reduce the annoying musical residual noise by lowering the
variance of the a priori SNR estimate. However, the disadvantage
of this approach is the slow adaptation towards speech onsets and
offsets since its performance strongly depending on the a priori
SNR estimate in the previous frame. This leads to a performance
degradation in the speech enhancement system. To overcome this
drawback, Yong et.al. [4] proposed a modified decision directed
(MDD) a priori SNR estimator, which matches the current noisy
speech spectrum with the a priori SNR estimate instead of the
previous one.

One of the most important considerations that needs to be taken
into account in the speech enhancement scheme is the speech
characteristics. Since speech is highly non-stationary, dividing the
degraded noisy signal into short frames is necessary in order to
be able to treat the speech signal in each frame as approximately

stationary. Spectral domain based speech enhancement utilizes the
Short Time Fourier transform (STFT) for this purpose, [5], [6], [7].

The main limitation when using of STFT is that the analysis
results in each frequency band has a uniform resolution which is not
well adapted to the non-uniform resolution of the human auditory
system [8]. Thus, using human auditory models as a pre-processor
in speech enhancement system may improve the subjective quality
and/or intelligibility for the enhanced speech [9].

Many proposals in the field of speech enhancement have repre-
sented the speech signals according to the human auditory system
by applying auditory motivated filter bank like, Gammatone filter
bank (GFB) [10], [11] bark scale based critical bands (CB) [12],
[13]. Yet, it still unclear as to which time-frequency representa-
tion gives better performance in adverse environment, when the
background noise level and characteristics are non-stationary. For
that reason, a cross evaluation among different frequency resolution
scales is important to investigate their impact on different speech
estimators.

In this paper, we present a cross evaluation of a priori SNR esti-
mators integrated with different time-frequency analysis techniques
(STFT and CB) by a subjective listening test according to ITU-
TP.835 methodology [7]. The subjective evaluation test demon-
strates that the enhanced speech signals which were processed using
CB achieved better results over those processed using STFT for low
SNR levels and non-stationary background noise.

This paper is organized as follows. Section II describes sin-
gle channel speech enhancement in STFT domain. Section III
demonstrates the perceptually based speech enhancement system.
Section IV presents the cross subjective quality evaluation. Section
V, represents results and discussion, and Section VI concludes the
paper.

II. SINGLE CHANNEL SPEECH ENHANCEMENT IN
STFT DOMAIN

Let s(t) and v(t) denote speech and uncorrelated noise, respec-
tively. The observed noisy speech signal y(t) in the discrete time
domain is given by

y(t) = s(t) + v(t) (1)

Taking the STFT of the observed speech signal, we get

Y (k,m) = S(k,m) + V (k,m) (2)

where S(k,m) and V (k,m) denote the complex spectral coeffi-
cients of speech signal and noise for a given frequency bin k and
the time frame index m, respectively.

Figure 1 shows the framework of the single channel speech
enhancement in STFT domain, where the clean speech estimate
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Fig. 1. Speech enhancement framework in STFT domain.

is obtained by applying a spectral magnitude weighting function
GSTFT(k,m) to the noisy spectrum as given by

Ŝ(k,m) = GSTFT(k,m)Y (k,m) (3)

The spectral magnitude weighting function often depends on the a
posteriori SNR γ(k,m)

γ(k,m) =
|Y (k,m)|2

λv(k,m)
(4)

and/or the a priori SNR ξ(k,m)

ξ(k,m) =
λs(k,m)

λv(k,m)
(5)

where λs(k,m) and λv(k,m) represent the clean speech PSD and
noise PSD, respectively.

In this work, we use the Wiener filter (WF) gain function [14],
which is given by

GSTFT(k,m) =
ξ(k,m)

1 + ξ(k,m)
. (6)

Finally, the speech estimate is obtained by taking the inverse STFT
of the enhanced speech and using the overlap-add method

ŝ(n) = ISTFT
(
Ŝ(k,m)

)
. (7)

III. SINGLE CHANNEL SPEECH ENHANCEMENT IN
CRITICAL BANDS

Since, the STFT has uniform resolution which is different from
the natural filtering operation of the human auditory system, it is
important to investigate if improvement in the speech perception
can be obtained by using a time-frequency representation with non
uniform resolution similar to the non linear frequency selectivity of
the human ear. One simple way to achieve the human perceptual
processing is by utilizing a critical band mapping from the STFT
analysis of the noisy speech signal.

The block diagram for critical band speech processing is de-
scribed in Figure 2. In the first step the noisy signal is transformed
to the time-frequency domain by applying STFT with K frequency
bins as in (2). In the second step, the output from the STFT
Y (k,m) is transformed into the critical band form by using an
approximate analytical function to express the conversion from
frequency f (in Hz) to critical band z (in bark scale), as given
by [15]

f = 600 sinh
(z
6

)
. (8)
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Fig. 2. Block diagram for the critical band processing.

By combining the FFT frequency bins into I critical bands, the
noisy output in the critical band is expressed as follows

YCB(i ,m) =

K/2+1∑
k=1

M(i, k) |Y (k,m)| (9)

where i = [1, 2, · · · , I]. The number of critical bands I is chosen
according to the bark scale [15]. Here, M(i , k) is the coefficient
of critical bandpass filter which is defined by [16]

M(i, k)=


10(z(k)−zc(i)+0.5) z(k) < zc(i)− 0.5

1 zc(i)−0.5<z(k)<zc(i)+0.5

10−2.5(z(k)−zc(i)−0.5) z(k) > zc(i) + 0.5
(10)

where zc(i) represents the center frequency of the ith critical band.
Then, the noisy spectrum YCB(i ,m) is used to estimate the noise
PSD λv(i,m), and a priori SNR estimation ξ(i,m) for each band.
Accordingly, the spectral magnitude weighting function GCB(m)
in critical band for the mth frame can be calculated as given by

GCB(m) = [GCB(1,m), GCB(2,m), ..., GCB(I,m)]T

GCB(i,m) =
ξ(i,m)

1 + ξ(i,m)
(11)

Once the weighting vector GCB(m) in critical band is calculated,
it is interpolated back to the STFT resolution G(m) through an
interpolation matrix A,

GSTFT(m) = AGCB(m) (12)

where the A matrix can be defined by least square approximation as
A = (MTM)−1MT and M represents the matrix with elements
M(i, k). From empirical findings, better results are obtained by
simplifying the reconstruction matrix as

A = diag

(
1

1M

)
MT (13)

where 1 is 1 × I row vector. The estimated speech in the STFT
domain is then reconstructed by applying the interpolated weighting
function GSTFT(k,m) on the noisy signal in (3).
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IV. CROSS SUBJECTIVE QUALITY EVALUATION

In order to test the efficiency of the critical band based frequency
scale compared to the conventional uniform scale (STFT), we
present a cross evaluation of a priori SNR estimators integrated
with different time-frequency analysis techniques (STFT and CB)
by a subjective listening test according to ITU-T recommendation
P.835 and conducted by ten participants. Three speech sentences
consisting of 1 female speaker and 2 male speakers from the
NOISEUS database [7] have been concatenated and corrupted with
two different background noise (babble and pink) from NOISEX-
92 database [17] for two levels of input SNR (0 dB and 10 dB).
The noisy speech signals have been processed using three decision
directed based a priori SNR estimation methods. The evaluated
estimation methods include DD method [3], MDD method [4],
critical band based a priori SNR estimation method (Prop-CB) [18]
and STFT based a priori SNR estimation method (Prop-STFT) [19].

All the evaluated methods have been combined with Wiener
filter (WF) gain function to estimate the clean speech signal.
Minimum mean square error (MMSE) noise power estimator based
on the speech presence probability [20] was employed to estimate
the noise PSD for all the a priori SNR estimators. Once the
clean speech signal estimate was obtained, it is presented to the
participants of the subjective listening test.

The listening test was performed in a tranquil office room
utilizing DT- 880 Beyerdynamic open air headphone. The test
lasted around 25 minutes for each participant. Prior to giving their
scores on the processed speech signals, the listeners were presented
with the clean speech signal and the unprocessed speech signal
as a kind of perspective for the best case and the worst case,
individually. After that the participants were asked to listen and rate
the enhanced signals according to ITU-T recommendation P.835.
This methodology guides the participants to form the basis of their
ratings regarding speech signal alone, background noise, musical
noise and overall quality as shown in Table I.

Furthermore, to assess the difference between the listening test
ratings, a statistical analysis of variance (ANOVA) is conducted
to present a comparative analysis in reference to the unprocessed
speech signal. A significant difference between scores was recog-
nized depending on the obtained significance level (p-value). H
represents the equality hypothesis and is defined as follows

H =

{
No significant difference is recognized, p > 0.05
Significant difference is recognized, p < 0.05

(14)

which means if p > 0.05, equality hypothesis is accepted. Other-
wise, the equality hypothesis is rejected.

V. RESULTS AND DISCUSSION

Figure 3 shows the mean results of the subjective listening test
when the clean speech signal is corrupted by babble background
noise for input SNR levels 0 dB and 10 dB. From the speech
signals scores, it can be clearly observed that speech enhancement
methods with CB have recorded higher scores than estimation
methods with STFT at low SNR, while they achieve approximately
same scores at high SNR. In terms of background noise, speech
signals using CB have recorded higher scores than speech signals
with STFT at low SNR, while in high SNR the background noise
scores between CB and STFT are almost the same which means
that all methods achieve the same amount of noise suppression.

Rating Description
Speech

5 very natural, no degradation
4 fairly natural, little degradation
3 somewhat natural, somewhat degraded
2 fairly unnatural, fairly degraded
1 very unnatural, very degraded

Background Noise
5 not noticeable
4 somewhat noticeable
3 noticeable but not intrusive
2 fairly conspicuous, somewhat intrusive
1 very conspicuous, very intrusive

Musical noise
5 not noticeable
4 somewhat noticeable
3 noticeable but not intrusive
2 fairly conspicuous, somewhat intrusive
1 very conspicuous, very intrusive

Table I: Scale description of the listening test criteria [4]. 
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Fig. 3. Mean subjective listening test scores for speech processed
by different speech enhancement methods and evaluated in babble
background noise for two SNR levels (left side) 0 dB and (right
side) 10 dB.

Musical noise results show that speech enhancement methods with
CB achieved better results (higher musical noise scores) than those
with STFT for different input SNR levels.

From the overall scores, it can be seen that the participants
preferred speech signals with CB for low SNR levels. While at
high SNR all methods achieves almost the same results.

Figure 4 shows the mean results of the subjective listening test
when the clean speech signal is corrupted by pink background
noise for input SNR levels 0 dB and 10 dB. In terms of musical
noise results show that CB based methods have recorded the least
amount of musical noise under different levels of input SNR values.
Although listening test results for speech signal (speech scale) show
that the participants preferred STFT enhanced speech signals over
CB in pink noise condition at low SNR values, in high SNR (10 dB)
the participants could not recognize any difference between STFT
and CB based speech enhancement methods. Regarding background
noise results (noise scale), it shows that better noise reduction is
obtained in speech enhancement with STFT (higher noise scores)
than CB methods under different SNR levels. From the overall
scores, it can be observed that the participants preferred the signals
estimated with STFT methods for low SNR values. In contrast, they
preferred signals estimated with CB based methods at high SNR.
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Fig. 4. Mean subjective listening test scores for speech processed
by different speech enhancement methods and evaluated in pink
background noise for two SNR levels (left side) 0 dB and (right
side) 10 dB.

V-A. STATISTICAL ANALYSIS

Table II reports the obtained p-values of ANOVA test under
different noise conditions. In terms of speech quality, The test
shows that all obtained p-values are higher than 0.05, i.e., there
was no statistically significant difference in speech quality between
the obtained scores of the examined algorithms. This means that
the enhanced speech signals did not contain a detectable speech
distortion compared to the unprocessed speech signals. From
background noise results, it can be clearly observed that all the
estimation methods provided statistically significant differences
when compared to the noisy speech signals in pink noise. However,
in babble noise case there was no significant difference deemed
for low SNR, whereas a significant difference achieved for high
SNRs. In terms of musical noise, there was no significant difference
between the enhanced speech signals that were estimated by the
evaluated methods and the unprocessed speech signals detected in
the different noise conditions and for varying levels of SNR. From
the overall results it can be observed that only in the high SNR
pink noise case, a significant difference was observed.

However, the above mentioned statistical analysis can not pro-
vide the answer as to which method performed better than the
unprocessed speech signal. As such, along with ANOVA results,
a post hoc comparison test according to Tukey’s HSD test was
also conducted to identify which method significantly improved
the quality of the unprocessed speech signal. By comparing the
scores obtained from the unprocessed speech signals and the scores
obtained with speech signals enhanced by the various methods, the
results of Tukey’s HSD test are tabulated in Tables III. In this
table asterisk indicates significant differences between enhanced
speech signals and noisy signal. It can be observed that some
methods only provided significant differences when compared to
the unprocessed speech signal in terms of background noise and
overall quality. In babble noise case, most of the SNR estimators
for STFT and CB except (CB-Prop) achieved significant noise
suppression over unprocessed speech signal at high SNR level.
In pink noise case, speech signals estimated using (STFT-DD)
and (STFT-Prop) methods achieved significant noise suppression
compared to noisy signal for different levels of SNR. In contrast, the
rest of the methods achieved better noise suppression performance
than unprocessed speech signals in higher SNR level only. In terms
of overall scale, the methods (DD-STFT and Prop-CB) significantly
improved the overall quality when compared to the unprocessed
speech signal for high SNR level.

Gain Noise Input p-value
function SNR Speech Background noise Musical noise Overall

WF
Babble

0dB 0.938 0.119 0.215 0.794
10dB 0.984 0.014 0.460 0.416

Pink
0dB 0.806 0.013 0.723 0.312

10dB 0.235 0.0001 0.540 0.002

Table II: One way ANOVA test results to verify the statistically
significant difference between different frequency warping scales
used in the listening test under different noise conditions.

Noise Input Rate STFT CB
SNR DD MDD Prop DD MDD Prop

Babble

0 dB

Speech
Noise

Musical noise
Overall

10 dB

Speech
Noise * * * * *

Musical noise
Overall

Pink

0 dB

Speech
Noise * *

Musical noise
Overall

10 dB

Speech
Noise * * * * * *

Musical noise
Overall * *

Table III: Tukey’s HSD Comparison between the enhanced speech
signal using WF gain function and the unprocessed speech signal
under different conditions.

VI. CONCLUSIONS
In this paper, a cross evaluation for STFT and CB processing was

conducted by using subjective listening test. From the test results,
it can be clearly noted that although the STFT method achieves
better results in stationary background noise in terms of better
noise suppression and speech quality, its performance degraded in
non-stationary background noise and is generating more musical
noise. On the other hand, CB processing provides significant benefit
in terms of less musical noise under different noise conditions
and different levels of input SNR. In addition, it achieves better
performance compared to STFT in non-stationary noise (babble
noise) especially for low SNR levels. This means that the proposed
critical band based frequency scale is more useful in low SNR and
non- stationary background noise. Further investigations are needed
for a more complete set of noise conditions.
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