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ABSTRACT

The extraordinary performance of the brain on various cogni-
tive tasks motivates the design of a biologically plausible sys-
tem for the challenging task of environmental sound recog-
nition. In this paper, we propose a novel approach based
on multi-spike learning and key-point encoding. Our encod-
ing extracts local temporal and spectral information from the
sound and converts it into spatiotemporal spike pattern, which
is further learned by the following spiking neural networks.
Our experiments demonstrate the robustness and effective-
ness of our approach across a variety of noise conditions,
outperforming other conventional baseline methods in both
mismatched and multi-condition scenarios.

Index Terms— Sound recognition, neural coding, multi-
spike learning, neuromorphic computing

1. INTRODUCTION

As one of the major challenges in the acoustic processing
field [1], environmental sound recognition has been receiv-
ing increasing interest in recent years not only because of
its research value for addressing the chaotic and unstructured
difficulties but also its importance in various applied develop-
ments such as bioacoustic monitoring [2], surveillance [3] and
general machine hearing [4]. Successful sound recognition
can provide a prompt description of a scene, which could be
used to take any further actions. This audio-based approach
is cheap and advantageous as is compared to a vision-based
one considering poor lighting or visual obstruction. Addi-
tionally, the fundamental differences between the tasks of au-
tomatic speech recognition and sound recognition motivate
studies designed specifically for sound [5–8]. Unlike struc-
tured speech or music signal, sounds are unstructured and
present in continuous background noise, which reduces the
discrimination of extracted features. Considering the extraor-
dinary performance of the human brain on this challenging
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sound recognition task, a human-like or brain-inspired ap-
proach is demanded to effectively and efficiently detect sound
events even under severe noise.

Like a typical recognition problem, sound recognition can
be divided into three major functional parts: preprocessing,
feature extraction and classification. In the stage of prepro-
cessing, signals are modified in a way to facilitate the fol-
lowing phase of feature extraction where a proper represen-
tation of the signal is formed. The learning and recognition
are involved in the final stage of classification. Different ap-
proaches can be categorized according to different employed
methods in these three stages.

A conventional approach typically adopts a frame-based
feature extraction where Mel-Frequency Ceptral Coefficients
(MFCC) is one of the most popular choices, followed by
Hidden Markov Model (HMM) for capturing the tempo-
ral information. There are two major drawbacks of such
an approach. Firstly, MFCC features are more favorable
for modeling single sound sources but not for environmental
sounds which typically contain a variety of sources [8]. These
MFCC features are modeled based on the overall spectrum,
making them vulnerable to noise. Secondly, HMM does not
model explicitly the diverse temporal dependencies of envi-
ronmental sounds. It relies on a first-order state transition
to implicitly model the temporal coding of the signal. Ef-
forts have been made to improve the system performance
by either incorporating sophisticated feature representations,
such as stabilized auditory image [9], spectrogram image
features [10] and matching pursuit [8], or involving advanced
machine learning techniques such as CNN [6] and DNN [7].
However, the temporal structure of the signal is still not well
modeled in these approaches. Additionally, almost none of
these take consideration of processing information in a more
biologically plausible way where spikes are adopted as like
in the brain [11].

To address the above challenges, we propose a novel
KP-SNN approach for sound recognition, based on key-point
(KP) feature encoding and spiking neural network (SNN)
processing. In a previous work [5], we combined local spec-
trogram features (LSFs) with the tempotron learning rule [12]
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Fig. 1. Framework demonstration of the multi-spike based sound recognition system. (a) information processing framework;
(b)-(d) mid-level representations of a sample sound under 10 dB noise; (e) target neural dynamics in response to the sound.

where neurons make decisions by firing one spike or keeping
silent. The temporal coverage of the tempotron is limited to
a single local feature in time. Here, our purpose is to utilize
multi-spike learning [13, 14] to improve the performance by
covering the whole time window of the signal with more
spikes, which is one significant departure from our previous
work. Another major difference with our previous work is
that we simplify the encoding by directly using the extracted
KPs without taking any extra steps for feature clustering.
Such simplification would be beneficial for low-power and
efficient on-line processing, especially when the system is
to be deployed in devices like wearables or cameras. Addi-
tionally, we enhance the masking freedom of our encoding to
generalize its potential for broader situations.

Our motivation is to develop a sound recognition system
that is inspired by the human brain and thus inherits its ad-
vantages, such as robustness, effectiveness and efficiency, to
a certain extend. It has suggested that the auditory systems
utilize the local time-frequency regions with high signal-to-
noise ratio (SNR) to process noise corrupted signals [15].
This supports the idea of using KPs. In addition, neurons
in the brain communicate with each other with spikes [11],
which inspires the idea of using SNNs for processing sound
signals. Neurons typically evolve with the dynamic environ-
ment and elicit as many spikes as necessary whenever a firing
condition is reached. This makes a multi-spike learning more
favorable.

The rest of this paper is organized as follows: Section 2
describes our proposed methods including the feature encod-
ing and multi-spike learning algorithms. Section 3 introduces
the experiments used for evaluating our approach, as well as
the results, followed by Section 4 which concludes our work.

2. METHODOLOGY

Following a typical pattern recognition system, we construct
our sound recognition framework by combining a feature ex-
traction and a classifier. In order to apply SNNs, a proper
encoding is necessary to convert external information into
spikes [16]. The idea is to represent and process informa-
tion in a sparse spike form. Fig. 1(a) gives an overview of the
proposed system where key-points are used for encoding and
multi-spike learning is adopted as the decision-making part.

2.1. Key-point spike encoding

The key-points (KPs) are detected by localizing the sparse
high-energy peaks in the spectrogram. These peaks are in-
herently robust to mismatched noise due to the property of
local maximum. As detected from the spectrogram, each KP
carries a local time-frequency information which will be suf-
ficient to construct a spatiotemporal spike pattern for further
processing with SNNs. This thus forms the idea of a sparse
and robust encoding with KPs.

In order to detect KPs, external acoustic signal is first con-
verted into spectrogram by Short-Time Fourier Transform.
The resulting spectrogram, S(t, f), describes the power spec-
tral density of the sound signal over both time and frequency
dimension. The spectrogram is then normalized to unit peak
amplitude, followed by a logarithm step to convert it into log
scale through log(S(t, f) + ε) − log(ε) with ε = 10−5. An-
other normalization is conducted before sending the spectro-
gram to KP detection, and we still use the notation of S(t, f)
at this stage for simplicity.

KPs are detected on the resulting spectrogram by search-
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ing local maxima across either time or frequency, as follows:

P (t, f) =

{
S(t, f)

∣∣∣S(t, f) = max
{ S(t± rt, f) or
S(t, f ± rf )

}}
(1)

Here, rt,f = 0, 1, ..., Rt,f . Rt = Rf = 4 denotes the
region size for KP detection, which we found was big enough
for a sparse representation, but small enough to extract impor-
tant peaks.

In order to further improve the sparsity of KPs, we intro-
duce two different masking schemes: absolute-value mask-
ing and relative-background masking. In the absolute-value
scheme, we will discard those KPs that satisfies the crite-
ria of P (t, f) < βa. In the relative-background masking
scheme, we compare the contrast of each KP and background
mean value to remove those according to P (t, f) ∗ βr <
mean{S(t ± dt, f ± df )}. βa and βr are the two hyper-
parameters that control the level of reduction on the number
of KPs. In our experiments, we set βa = 0.15 and βr = 0.85.

In [5], Local Spectrogram Features (LSFs) are further ex-
tracted based on the KPs, and modeled by a Self-Organizing
Map (SOM) to generate a spike pattern. We find these steps
are unnecessary for spike encoding, thus increasing the com-
plexity of the system. The KPs contain both temporal and
spectral information, which are sufficient enough to form a
spatiotemporal spike pattern. In this paper, we will examine
this idea of simplified encoding. Fig.1(b-d) illustrates an en-
coding example.

2.2. Multi-spike learning

The spike learning rule is used to process spike-based pat-
terns and train neurons to adapt their weights for a favorable
response to input signals. The tempotron rule introduces an
efficient plasticity algorithm to train a neuron to elicit a single
spike in response to target patterns while keep silent to oth-
ers [12]. This rule was employed in our previous work [5]
which has successfully demonstrated the strength of SNNs
for the given task. However, the tempotron rule is designed
to constrain neurons to have binary response only, namely ei-
ther a single spike or none. Considering the multi-spike be-
havior in the brain, this binary firing dynamics is a departure
from approaches directing to biological plausibility. More-
over, each spike decision is made based on a single local tem-
poral region with the rest not being fully utilized. Therefore,
a learning rule with multi-spike capability is more favorable
than a binary one for the sound recognition task. We have pro-
posed a group of multi-spike learning algorithms [13, 14, 17]
which can train neurons to fire a desired number of spikes in
response to a target pattern, and we adopt such a multi-spike
learning algorithm in this study to fully explore its benefits
for the sound recognition task.

The spiking neuron continuously integrates afferent
spikes into its membrane potential, and generates as many

spikes as necessary whenever a firing condition is reached.
To be specific, the neuron dynamics is as follows:

V (t) =

N∑
i=1

wi

∑
tji<t

K(t− tji )− ϑ
∑
tjs<t

exp

(
− t− t

j
s

τm

)
(2)

wherewi denotes the synaptic efficacy. tji and tjs are the affer-
ent input spike and neuron’s output spike, respectively. ϑ and
τm represent the firing threshold and neuron’s time constant,
respectively. The kernel K models the postsynaptic poten-
tials, and is given in the following form:

K(t− tji ) = V0

[
exp

(
− t− t

j
i

τm

)
− exp

(
− t− t

j
i

τs

)]
,

(3)
where V0 is a constant parameter that normalizes the peak
of the kernel to unity, resulting the amplitude is governed by
synaptic efficacy.

The relation between neuron’s output spike number and
its threshold is characterized by a spike-threshold-surface
(STS) [14, 18]. A learning rule can thus be derived to modify
synaptic weights in such a way that resulted STS can lead to
a desired number of spikes. Here, we adopt the TDP1 [14]
as our multi-spike learning rule due to its simplicity and effi-
ciency. The gradients of critical threshold ϑ∗k with respect to
weight wi is given as:

ϑ∗
′

i =
∂V (t∗)

∂wi
−

m∑
j=1

∂V (t∗)

∂tjs

1

V̇ (tjs)

∂V (tjs)

∂wi
(4)

where m denotes the number of output spikes occur before
the time of a critical threshold, t∗. Based on Eq. 4, learning
rules can thus be developed in a way to increase the number of
output spikes if neurons fire less than a target, and to decrease
it if more spikes are generated. Detailed descriptions about
the learning can be referred in our previous work [14].

In the multi-class sound recognition task, we train one
neuron corresponding to each category to fire multiple spikes.
Therefore, the total number of output spikes is used for clas-
sification.

3. EXPERIMENTS

In this section, we conduct experiments to examine the per-
formance of our proposed system, i.e. KP-SNN, for the
challenging task of sound recognition. Experimental results
are present with discussions. We compare our approach to
a variety of different standard ones that are used for sound
recognition, including MFCC-HMM and spectrogram-based
deep learning approaches (SPEC-DNN and SPEC-CNN).
We also provide comparison to our previous spike-based ap-
proach, LSF-SNN, where binary-spike response is used for
training. We will examine the effects of multi-spike approach
on improving recognition performance by comparing both
the multi-spike (mul) and binary-spike (bin) learning rules.
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Table 1. Classification accuracy with mismatched training.
Methods KP-SNN (mul) KP-SNN (bin) LSF-SNN MFCC-HMM SPEC-DNN SPEC-CNN

Clean 100% 99.35% 98.5% 99.0% 100% 99.83%
20dB 99.5% 96.58% 98.0% 62.1% 94.38% 99.88%
10dB 98.68% 94.0% 95.3% 34.4% 71.8% 98.93%
0dB 98.10% 90.35% 90.2% 21.8% 42.68% 83.65%
-5dB 97.13% 82.45% 84.6% 19.5% 34.85% 58.08%
Avg 98.68% 92.54% 93.3% 47.3% 68.74% 88.07%

3.1. Experimental dataset

Following the selection in [5], we choose the following ten
sound classes from the Real World Computing Partnership
(RWCP) [19]: whistle1, ring, phone4, metal15, kara, horn,
cymbals, buzzer, bottle1 and bells5. We select the first 80
files of each class to form our experimental dataset. In each
experimental run, we randomly select half files of each class
as training, and leave the rest as testing. The ”Speech Babble”
noise environment is obtained from NOISEX92 database [20]
for evaluating the robustness of the sound recognition. The
performance is averaged over 10 runs of the experiments.

3.2. Experimental setups

The experiments are designed to evaluate the contribution
of multi-spike based approach to sound recognition. We
primarily select the conventional frame-based MFCC-HMM
as one of the baselines. We also use the deep learning ap-
proaches, DNN and CNN, which are widely applied to visual
and auditory recognitions. The above three baselines form the
non-spiking based approaches for comparison with our spike-
based ones. Additionally, the LSF-SNN is used to benchmark
the contribution of our multi-spike based approach, i.e. KP-
SNN (mul). Neurons corresponding to each category in our
system are trained to elicit at least 20 spikes, and a decision is
voted by the neuron with the most number of output spikes.
We trained the system in a clean condition and evaluate it
with different levels of noise: clean, 20, 10, 0 and -5 dB.
This scenario is denoted as mismatched training. In order
to further increase the performance, we conducted a multi-
condition training scenario which is commonly used for deep
learning. Neurons are trained with random levels of noise
imposed on each sample sound under this case.

3.3. Results and discussion

Table 1 shows the recognition accuracies of different ap-
proaches under the mismatched condition. As can be seen
from the table, the conventional machine learning approaches
achieve a high accuracy of over 99% for clean environment,
but their performance will decrease rapidly with the increas-
ing noise, resulting in an average accuracy of 47.3% (MFCC-
HMM), 68.74% (SPEC-DNN) and 88.07% (SPEC-CNN).

Table 2. Classification accuracy with multi-condition train-
ing.

Methods KP-SNN (mul) KP-SNN (bin) SPEC-CNN
Clean 99.65% 99.13% 99.89%
20dB 99.83% 99.23% 99.89%
10dB 99.73% 99.1% 99.89%
0dB 99.43% 95.1% 99.11%
-5dB 98.95% 89.38% 91.17%
Avg 99.52% 96.38% 98.04%

The spiking-based approaches perform relatively well for
each of the noisy conditions. Our proposed multi-spike ap-
proach, KP-SNN(mul), outperforms all the other approaches
in severe noisy conditions, resulting in a strong result with av-
erage accuracy of 98.68%. We also evaluate the performance
of binary-spike learning under our framework as compared
to that in LSF-SNN [5]. The comparative performance of
these two binary-spike learning frameworks demonstrates
the effectiveness of our simplification on the encoding with
KPs. In addition, we apply a multi-condition training scheme
to further improve the performance of our system, and the
results are presented in Table 2. The noisy training can ef-
fectively improve the performance of each approach. The
proposed approach still dominates all the others over strong
noise levels, with an average accuracy of 99.52%.

The superior performance of our proposed approach re-
lies on the multi-spike dynamics which can reliably cover the
whole duration of the sound presence (see Fig. 1(e)). Comb-
ing the robust and sparse KP spike encoding, our approach
performs well in both mismatched and multi-condition sce-
narios.

4. CONCLUSION

In this paper, we proposed a novel framework with key-point
encoding and multi-spike learning for robust sound recogni-
tion. We simplified the spike encoding method by directly
converting the temporal and spectral information of KPs into
spatiotemporal spikes, and enhanced the encoding freedom
with two different masking schemes. Our multi-spike ap-
proach could outperform the conventional baselines under
both mismatched and multi-condition cases.

893



5. REFERENCES

[1] Douglas OShaughnessy, “Automatic speech recogni-
tion: History, methods and challenges,” Pattern Recog-
nition, vol. 41, no. 10, pp. 2965–2979, 2008.

[2] Felix Weninger and Björn Schuller, “Audio recognition
in the wild: Static and dynamic classification on a real-
world database of animal vocalizations,” in acoustics,
speech and signal processing (ICASSP), 2011 IEEE in-
ternational conference on. IEEE, 2011, pp. 337–340.

[3] Stavros Ntalampiras, Ilyas Potamitis, and Nikos Fako-
takis, “On acoustic surveillance of hazardous situa-
tions,” in Acoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference on.
IEEE, 2009, pp. 165–168.

[4] Richard F Lyon, “Machine hearing: An emerging field
[exploratory dsp],” IEEE signal processing magazine,
vol. 27, no. 5, pp. 131–139, 2010.

[5] Jonathan Dennis, Qiang Yu, Huajin Tang, Huy Dat Tran,
and Haizhou Li, “Temporal coding of local spectrogram
features for robust sound recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE In-
ternational Conference on. IEEE, 2013, pp. 803–807.

[6] Ilyas Ozer, Zeynep Ozer, and Oguz Findik, “Noise ro-
bust sound event classification with convolutional neu-
ral network,” Neurocomputing, vol. 272, pp. 505–512,
2018.

[7] Ian McLoughlin, Haomin Zhang, Zhipeng Xie, Yan
Song, and Wei Xiao, “Robust sound event classification
using deep neural networks,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 23,
no. 3, pp. 540–552, 2015.

[8] Selina Chu, Shrikanth Narayanan, and C-C Jay Kuo,
“Environmental sound recognition with time–frequency
audio features,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 17, no. 6, pp. 1142–
1158, 2009.

[9] Thomas C Walters, Auditory-based processing of com-
munication sounds, Ph.D. thesis, University of Cam-
bridge, 2011.

[10] Jonathan Dennis, Huy Dat Tran, and Haizhou Li, “Spec-
trogram image feature for sound event classification in
mismatched conditions,” IEEE signal processing letters,
vol. 18, no. 2, pp. 130–133, 2011.

[11] Peter Dayan and Laurence F Abbott, Theoretical neuro-
science, vol. 806, Cambridge, MA: MIT Press, 2001.

[12] Robert Gütig and Haim Sompolinsky, “The tempotron:
a neuron that learns spike timing–based decisions,” Na-
ture neuroscience, vol. 9, no. 3, pp. 420, 2006.

[13] Qiang Yu, Longbiao Wang, and Jianwu Dang, “Neu-
ronal classifier for both rate and timing-based spike pat-
terns,” in International Conference on Neural Informa-
tion Processing. Springer, 2017, pp. 759–766.

[14] Qiang Yu, Haizhou Li, and Kay Chen Tan, “Spike tim-
ing or rate? neurons learn to make decisions for both
through threshold-driven plasticity,” IEEE Transactions
on Cybernetics, 2018.

[15] Jont B Allen, “How do humans process and recognize
speech?,” IEEE Transactions on speech and audio pro-
cessing, vol. 2, no. 4, pp. 567–577, 1994.

[16] Qiang Yu, Huajin Tang, Kay Chen Tan, and Haizhou Li,
“Rapid feedforward computation by temporal encoding
and learning with spiking neurons,” IEEE transactions
on neural networks and learning systems, vol. 24, no.
10, pp. 1539–1552, 2013.

[17] Qiang Yu, Longbiao Wang, and Jianwu Dang, “Effi-
cient multi-spike learning with tempotron-like ltp and
psd-like ltd,” in International Conference on Neural In-
formation Processing. Springer, in press, 2018.

[18] Robert Gütig, “Spiking neurons can discover predictive
features by aggregate-label learning,” Science, vol. 351,
no. 6277, pp. aab4113, 2016.

[19] Satoshi Nakamura, Kazuo Hiyane, Futoshi Asano,
Takanobu Nishiura, and Takeshi Yamada, “Acoustical
sound database in real environments for sound scene
understanding and hands-free speech recognition.,” in
LREC, 2000.

[20] Andrew Varga and Herman JM Steeneken, “Assess-
ment for automatic speech recognition: Ii. noisex-92: A
database and an experiment to study the effect of addi-
tive noise on speech recognition systems,” Speech com-
munication, vol. 12, no. 3, pp. 247–251, 1993.

894


		2019-03-18T10:49:24-0500
	Preflight Ticket Signature




