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ABSTRACT 

 
This paper presents a novel approach to improve the 
performance of polyphonic sound event detection that 
combines a convolutional bidirectional recurrent neural 
network (CBRNN) with transfer learning. The ordinary 
convolutional recurrent neural network (CRNN) is known 
to suffer from a vanishing gradient problem, which 
significantly reduces the efficiency of information transfer 
to past events. To resolve this issue, we combine forward 
and backward long short-term memory (LSTM) modules 
and demonstrate that they complement each other. To 
effectively deal with the issue of overfitting that arises 
from increased model complexity, we apply transfer 
learning with a dataset that contains synthesized artifacts. 
We show that the model achieves faster and better 
performance with less data. Simulations with the 2016 
TUT dataset show that the performance of the CBRNN 
with transfer learning is dramatically improved compared 
to the ordinary CRNN; the F1 score was 28.4% higher, and 
the error rate was 0.42 lower. 
 

Index Terms— polyphonic sound event detection,  
convolutional recurrent neural network, bidirectional 
LSTM, transfer learning 
 

1. INTRODUCTION 
 
Sounds in the world come from various sources, such as 
cars, people, and buildings. Sound event detection (SED) 
can be performed to label the datasets derived from these 
sounds by predicting sound events in the given audio. SED 
techniques have been applied to audio surveillance [1], 
acoustic monitoring for social care [2], urban sound 
analysis [3], multimedia event detection [4] and bird call 
detection [5]. 

The specific type of SED one performs is based on the 
number of audio channels and the number of simultaneous 
sound events. Stereo SED [6,7] uses both audio channels 
with spatial information, while mono SED uses only one 
channel. Additionally, monophonic detection [8] 

recognizes one sound event, and polyphonic detection 
considers more than one sound event and overlapping 
sounds. Early research employing polyphonic SED 
transformed audio into mel-frequency cepstral coefficients 
(MFCC) and used machine learning techniques, such as 
support vector machines [1], the hidden Markov model 
(HMM), and the Gaussian mixture model (GMM) [9]. 

This paper proposes a new framework for polyphonic 
detection of monaural audio, which is a difficult task due to 
the limited amount of available information. Specifically, 
we combine a fully-connected neural network (FNN) [10], 
convolutional neural networks (CNN) [11, 12, 13], and 
recurrent neural networks (RNN) [14] for SED. Unlike 
recent studies on the capsule network-based model [15], 
bidirectional long short-term memory-hidden Markov 
model (LSTM-HMM) hybrid model [16], and 
convolutional recurrent neural networks (CRNNs) [17], this 
study presents an approach to SED that employs a 
convolutional bidirectional recurrent neural network 
(CBRNN), showing how this model solves the vanishing 
gradient problem and why the two opposing directional 
models complement each other. 

Training this model is tricky due to the high 
complexity of the model. To resolve this issue, we propose 
a transfer learning strategy based on a synthetic dataset, 
which we call Humelo synthetic. Although raw data is easy 
to obtain, it is very difficult to manually label. Therefore, 
instead of labeling real-life audio, we added synthesized 
artifacts to the data. Most prior studies are based on four 
datasets: TUT-SED 2009 [18], TUT-SED 2016 [19], TUT-
SED synthetic 2016 [20], and CHiME-Home [21]. 
However, TUT-SED 2009 is a private dataset, and CHiME-
Home is chunk-based, not frame-based. Therefore, we used 
the TUT-SED 2016 and TUT-SED synthetic 2016 datasets, 
which are public and frame-based. Note that the public 
real-life audio dataset, TUT-SED 2016, has a very small 
quantity of data (78 minutes), while the artificial audio 
dataset, TUT-SED synthetic 2016, has about 9 hours of 
data. 

We pretrained the proposed model, CBRNN, with our 
artificial dataset (Humelo synthetic) and transferred some 
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pre-trained weights from the pre-trained version to the 
main model. 

 
2. PROPOSED METHOD 

 
We transformed the raw audio into a mel spectrogram 
through preprocessing and used it as an input for the model. 
To solve the vanishing gradient problem of the CRNN 
model, we used a CBRNN. We also devised a synthetic 
data-based transfer learning scheme to improve the 
learning speed and solve the data shortage. 
 
2.1. Preprocessing 
 
Our system uses an input with a fixed length. So, we 
divided the raw audio into five-second chunks. If the 
remaining audio was shorter than five seconds, the rest was 
padded with 0. Then, we set the sampling rate and channel 
number to 44100 and 1, respectively. The five-second 
chunks were short-time Fourier transformed (STFT) with 
50 ms frames and 50% overlap, and the results were given 
in the log magnitude of 40 mel per frame. After changing 
the mel spectrogram’s amplitude to decibels, we clipped 
below -100 db and normalized them to fit [-1,1]. We also 
performed frame-based labeling, assigning a label vector to 
every frame. The k-th value of the vector is indicated as a 
binary variable depending on whether the k-th class exists 
in the frame. 
 
2.2. Forward-backward learning architecture 
 
As shown in Fig 1, the proposed CBRNN model combines 
bidirectional LSTM [16] and a CRNN [18]. The 
preprocessed mel spectrogram, which is 40 * 200 in size, 
was taken as an input and passed through the three layers 
of CNN. The number of filters was set to (256, 256, 256), 
and the kernel size was kept at 3. A sigmoid activation 
function was used, and the weights were randomly 
initialized each time.  

After each convolutional layer operation, max pool, 
dropout, and batch normalization were performed. The max 
pool proceeded only on the decibel axis by (5, 4, 2). The 
dropout rate was fixed at 0.3. After all of the CNN layers, 
the output format was set to 1 * 200 * 256. The filter axis 
was concatenated to the decibel axis, resulting in 256 * 200, 
and then passed through the bi-directional RNN (BRNN) of 
the three layers. Each RNN layer consisted of 100 LSTM 
cells, and each cell had 100 units. Instead of batch 
normalization, we applied layer normalization and used the 
same sigmoid for the activation function.  

Forward and backward LSTM differ in terms of input 
order; backward LSTM inputs information in the opposite 
order as forward LSTM. We merged the output of forward 
and backward LSTM into a simple concatenate and used 
them as input for the next layer. Finally, the results of the 

BRNN were derived from the dense layer, which converted 
the BRNN output to a class label output vector. 

 

Fig 1. Proposed method: a CBRNN architecture with 
transfer learning and a synthetic dataset. 

 
2.3. Transfer learning with a synthetic dataset  
 
We performed transfer learning to manage the increased 
model complexity. Transfer learning is usually used to pre-
train a model that performs the same or similar tasks as the 
main model, and then the pre-trained weights are used to 
improve the learning speed and performance of the main 
model. To apply transfer learning, we trained the CBRNN 
model with an artificially synthesized dataset and then 
created the CNN in the new CBRNN model using the pre-
trained model’s CNN weights. 

To create an artificial dataset (Humelo synthetic), we 
chose 20 classes based on [8], downloaded three different 
kinds of public audio for each class from Freesound and 
YouTube, and obtained the overall mean and standard 
deviation of all the downloaded audio. After randomly 
selecting one to three classes to be synthesized, the length 
and position of audio were randomly selected and 
synthesized to produce five-second empty audio clips. In 
the process of synthesis, the amplitude was normalized by 
multiplying the Gaussian random value obtained from the 
overall mean and the standard deviation. 
 

3. EVALUATION 
 
3.1. Dataset 
 
We used a total of three datasets: an artificial dataset to 
pre-train the model and TUT-SED 2016 and TUT-SED 
synthetic 2016 for evaluation. TUT-SED 2016 was 
recorded in two acoustic scenes in a home and a residential 
area and includes the dataset used in the DCASE 2016 
challenge. The home scene produced 7 classes of sound 
events, which are 42 minutes long, and the residential area 
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scene produced 11 classes of sound events, which are 36 
minutes long. We used the same classifier for both acoustic 
scenes. TUT-SED synthetic 2016 includes synthesized data 
and consists of 16 classes and 566 minutes of audio.  

We used 60% for training, 20% for testing, and 20% 
for validation for all data sets. 
 
3.2. Evaluation Metrics 
 
We used segment-based evaluation metrics to measure 
performance. The length of the segment was a single frame 
(50 ms). We used the F1 score and the error rate (ER) to 
analyze the performance of the model and compare it with 
other models. The F1 score for precision (P) and recall (R) 
was defined as follows:  

. 
Also, the error rate was defined as follows using insertions 
(I), deletions (D), the substitution (S) term, and active 
classes (N): 

, 
where k represents the segment index and K is the total 
number of segments. Further definitions and explanations 
are given in [22]. 

In addition, the performance of each class was 
compared using AUC, the area of ROC curve, drawn by 
true positive ratio (TPR) and false positive ratio (FPR). 
 
3.3. Experimental Setup 
 
As described in detail above, the proposed CBRNN 
consists of three CNN layers, three RNN layers, and one 
dense layer. All activation functions were sigmoid 
functions, and the following cross entropy function was 
used as a loss function instead of sigmoid cross entropy to 
avoid duplication of the sigmoid after the dense layer: 

, 
where P and Q are the true and predicted labels of the xth 
value, respectively. The optimizer proceeded with Adam 
and the learning rate from 0.001 to exponential decay. 
 

4. RESULT 
 
In this section, we compare the performance of the base 
line CRNN [18] and CRNN (pre-CRNN), CBRNN and the 
proposed method, transfer learned CBRNN (tl-CBRNN). 
 
4.1. Performance comparison based on benchmark 
datasets 
 

The results for the TUT-SED 2016 and TUT-SED synthetic 
2016 datasets (i.e., the mean and standard deviation over 
20 simulations) are shown in Table 1. The best case is 
indicated by a bold font. In the case of TUT-SED 2016, 
pre-CRNN was 0.6 better than the baseline but 0.15 better 
in terms of the ER. In the case of TUT-SED synthetic 2016, 
the pre-CRNN performed much worse than the baseline. 
For both datasets, CBRNN significantly outperformed 
CRNN.  

 
In the case of TUT-SED 2016, the F1 score and ER 

were improved by 22.4 and 0.37, respectively, and in the 
case of TUT-SED synthetic 2016, they were improved by 
4.3 and 0.05, respectively. TUT-SED 2016, the real audio 
dataset, showed a tremendous improvement in results. Also, 
in the case of tl-CBRNN, the F1 score was improved by 
about 5 ~ 4 and the ER was improved by about 0.05 ~ 0.04 
compared with CBRNN. 	
 
4.2. Post hoc analysis : forward-backward learning 
 
The most notable difference between the CBRNN and 
baseline CRNN is that backward LSTM was added to the 
CBRNN. As mentioned earlier, the disadvantage of CRNN 
is that the gradient vanishes when RNN becomes longer. 
Fig 2. shows the gradient variation trends of forward and 
backward LSTM in CBRNN. In forward LSTM, the 
forward gradient was updated at less than half the speed of 
the backward gradient, and the results were reversed for 
backward LSTM. Thus, it appears that combining forward 
and backward LSTM in CBRNN solves the gradient 
vanishing problem. 

 

Fig 2. Cell state variation of forward and backward LSTM 
cells. 
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Table 1. F1 score and error rate results for single frame 
segments.  
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We used t-SNE [23] to show that forward LSTM and 
backward LSTM encode complementary information. One-
dimensional t-SNE was performed for each of the 100 
outputs of forward and backward LSTM. We plotted a 
scatter diagram using the results of forward and backward 
t-SNE for the y and x axes. Fig 3. shows the results of t-
SNE analysis of the five best and five worst classes based 
on AUC. Figs. 3a and 3c show the clustering results for 
true label, and Figs. 3b and 3d are graphs comparing the 
label predicted by the model and the true label. The wrong 
labels are denoted by red. Comparison of the true label (Fig. 
3a) and the predicted label (Fig. 3b) reveals that the top 
classes lead to better clustering results than the bottom 
classes. Also, comparison of Fig. 3a with Figs. 3c, 3b, and 
3d shows that Figs. 3b and 3d have better and more 
predictable clustering results. This indicates that the value 
of each axis calculated by t-SNE is very important for 
classification. Finally, the most important implication of 
the results, shown in Fig. 3, is that clustering cannot be 
performed with the same class for forward and backward 
projection. In particular, it is evident that, in the case of the 
top classes, a combination of forward and backward 
learning is necessary as the two types of learning are 
complementary. 

 

 

 

Fig 3. t-SNE results concerning forward and backward 
LSTM output. Predicted labels that were wrong are 
denoted by red. (a) True labels of the top five classes 
according to t-SNE. (b) Predicted labels of the top five 
classes according to t-SNE. (c) True labels of the bottom 
five classes according to t-SNE. (d) Predicted labels of the 
bottom five classes according to t-SNE. 

 
4.3. Post hoc analysis : transfer learning  
 
We show that transfer learning significantly improved the 
speed of training. Fig. 4a shows the convergence speed of 
each model for TUT-SED 2016. The average learning 

speed of pre-CRNN was slowest (1,670 steps), followed by 
CBRNN (635 steps) and tl-CBRNN (465 steps). The 
convergence speed was measured from the convergence 
step at which test loss occurred. As shown in Fig. 4b, an 
early stopping regime was imposed on each model to 
prevent overfitting. 
 

 

	
 

5. CONCLUSION 
 
This paper presents a novel framework for SED that 
employs transfer learning and is based on a synthetic 
dataset. The performance of the proposed method is 
demonstrated to be significantly better than that of other 
methods. Specifically, the F1 score and error rate were 
increased by 28.4 and 0.42, respectively, for the TUT-SED 
2016 dataset and by 7.6 and 0.09, respectively, for the 
TUT-SED synthetic 2016 dataset. The learning speed was 
improved about fourfold. We also show that a combination 
of backward and forward LSTM and integration of 
complementary information can effectively solve the 
vanishing gradient problem, and using transfer learning 
with a synthetic dataset avoids overfitting issues. Further 
studies should focus on implementing a dynamic 
interaction between the backward and forward LSTM 
modules as well as designing a general scheme for artifact-
based data synthesis for transfer learning. 
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