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ABSTRACT

There are many sound classification problems that have target
classes which are rare or unique to the context of the problem. For
these problems, existing data sets are not sufficient and we must
create new problem-specific datasets to train classification models.
However, annotating a new dataset for every new problem is costly.
Active learning could potentially reduce this annotation cost, but it
has been understudied in the context of audio annotation. In this
work, we investigate active learning to reduce the annotation cost
of a sound classification dataset unique to a particular problem. We
evaluate three certainty-based active learning query strategies and
propose a new strategy: alternating confidence sampling. Using
this strategy, we demonstrate reduced annotation costs when actively
training models with both experts and non-experts, and we perform
a qualitative analysis on 20k unlabeled recordings to show our ap-
proach results in a model that generalizes well to unseen data.

Index Terms— active learning, sound classification, audio an-
notations, machine listening

1. INTRODUCTION

Sound classification is an important topic in machine listening, hav-
ing a wide range of applications such as noise monitoring [1, 2], an-
imal call classification [3, 4], and music information retrieval [5, 6].
Modern sound classification models are typically trained using su-
pervised learning. However, supervised learning requires a large
amount of labeled data to train a robust model. While labeled au-
dio data can be acquired through human annotation, it can cost a
significant amount of effort. One can justify this cost if the data
can be reused for several different problems (e.g., AudioSet [7]), but
there are many problems that have sound classes of interest that are
idiosyncratic to the problem, e.g. unusual machine or sensor fail-
ures. For such problems, existing data is of little value, and we must
collect new data that may have minimal utility for other tasks—thus
increasing the annotation cost per task.

One example of an idiosyncratic sound classification task ap-
pears in the Sounds of New York City (SONYC) project [8].
SONYC aims to monitor, analyze, and mitigate urban noise pol-
lution by deploying a city-wide acoustic sensor network and lever-
aging machine listening, big data analytics, and citizen science. The
project uses machine listening to continuously detect sound events
of interest within urban acoustic environments. Thus far, SONYC
has deployed 54 sensors and has recorded approximately 28 years
worth of audio for analysis and model training.

However, within these unlabeled audio recordings, a distortion
artifact of unknown origin has been discovered that is present in an
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estimated 7% of the data. This noisy, unknown sound may confuse
machine listening models, causing them to produce inaccurate pre-
dictions. To remedy this situation, we need labeled examples of the
artifact noise to train models to classify and disambiguate this new
sound source. Since this sound class appears unique to our data, we
cannot use an existing model or labeled dataset—we must annotate
and develop a new problem-specific dataset. In addition, since this
rare class only occurs in roughly 7% of the data, we must use an
efficient annotation method that does not oversample negative ex-
amples. We propose to tackle this problem using active learning.

Active learning (AL) is a machine learning method that actively
chooses the data to learn from. An AL algorithm queries an oracle—
in our case, human annotators—for labels of the most informative
instances to improve model performance. By doing so, AL maxi-
mizes the effectiveness of each annotation and can significantly re-
duce the number of labels, and thus the human effort, to develop a
robust classifier. The effectiveness of AL has been shown in research
areas such as natural language processing [9, 10], computer vision
[11, 12], and speech recognition [13, 14]. Recently, AL and other
interactive learning frameworks have also been applied to reducing
audio annotation time [15], sound event classification for bird sounds
[16, 17] and for environmental sound [18, 19]. Most AL research ef-
forts simulate the AL querying process by using pre-labeled ground
truth as the oracle. In contrast, we apply AL to real, unlabeled urban
sound data from SONYC with actual human annotators in the loop.

In this work, we demonstrate the use of AL in a real-world sce-
nario to train a binary sound classification model to identify an un-
usual, problem-specific noise source. In doing so, we systematically
evaluate certainty-based AL query strategies, propose a new sam-
pling strategy: alternating confidence sampling, and evaluate our
approach on a population of 15 annotators. The proposed approach
results in a model with comparable performance to a reference model
but trained more efficiently on far fewer annotated recordings.

2. ACTIVE LEARNING FRAMEWORK

To train our AL models, we use a pool-based AL framework which
consists of the following steps in a loop:

1. The labeled training pool is initialized to contain one positive
and one negative example.

2. A random forest classifier is trained using the labeled training
pool.

3. Using the trained model, a sampler selects a single query from
the unlabeled data pool using a certainty-based query strategy
(see Section 3).

4. A human annotator listens to and labels the queried audio
clip.

5. The newly labeled example is then added to the training set,
completing one iteration.
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6. Steps 2 to 5 are repeated until the desired model performance
is achieved.

In our experiments, we perform 100 training iterations to train
each model. Note that we use a random forest because it is robust
to training with a small dataset and can be quickly updated with new
data. In addition, only one query is labeled in each iteration instead
of a batch of queries since our goal is to reduce annotation effort.

3. QUERY STRATEGIES

The most critical part of AL is defining the informativeness of each
unlabeled example and querying instances accordingly. While there
are several different families of query strategies, including certainty-
based sampling [20], query-by-committee [21], expected error re-
duction [22], and medoid-based AL [18], we focus on the certainty-
based sampling strategy since there is a direct relation between “cer-
tainty” and the prediction probability given by a random forest. We
systematically evaluate three variations of certainty-based sampling:
least-confidence sampling, semi-supervised active learning, and al-
ternating confidence sampling.

3.1. Least-confidence sampling (LC)

Least-confidence sampling (LC) is a popular certainty-based sam-
pling strategy [20, 23] in which the model queries the instance that
it is least confident about how to label. In the binary classification
case, it is equivalent to two other common certainty-based sampling:
maximum entropy [24] and smallest margin [25]. It is also equiva-
lent to querying the instance whose prediction probability is closest
to the decision threshold Td in a random forest model. In our exper-
iments, we evaluate two methods to determine Td for sampling: 1)
fixed threshold, setting Td = 0.5, 2) varied threshold, setting Td at
each iteration to the value that gives the best validation performance.
This relatively unrealistic condition is setup to see if decision thresh-
old significantly affects AL model performance.

3.2. Semi-supervised active learning (SSAL)

Previous works have demonstrated the benefit of using AL combined
with semi-supervised learning (SSL) [18, 19], a technique that uses
a pre-trained model on a smaller set of labeled data to automati-
cally annotate a larger set of unlabeled data. Here we use the semi-
supervised active learning strategy similar to [19]. The model is
updated twice in each training iteration, once by AL and once by
SSL. In the AL stage, the model goes through one regular AL train-
ing iteration using the LC query strategy with a fixed threshold Td.
Then in the SSL stage, the model predicts labels for the unlabeled
data pool. Predicted labels with confidence higher than a set thresh-
old TSSL are then added to the labeled data pool for retraining the
model. In our experiments, the model was always more confident
about negative predictions. To counter this prediction bias, we select
a balanced subset of the confident predicted labels. We evaluate two
different TSSL in our experiments: 0.95 and 0.98.

3.3. Alternating confidence sampling (AC)

While LC is effective at selecting the most informative instance, it
is also sensitive to annotation error. For example, if an annotator
mislabels an example during training, the model may subsequently
misclassify some examples with high confidence, making it diffi-
cult to correct the error since the instances with high confidence will

not be queried by LC. To make the model more robust to such er-
rors, we propose a new query strategy: alternating confidence sam-
pling (AC). With this strategy, the model not only queries the in-
stances about which it is least confident, but it also queries instances
about which it is very confident. In our setting, the model occasion-
ally queries instances with high confidence by randomly sampling
from the set with prediction probabilities higher than a threshold
THC = 0.85. This method accounts for the possibility of the model
making confident errors in its prediction during training and allows
the human annotator to check and fix those errors. Two frequencies
fHC for sampling high-confidence instances are tested: drawing one
high-confidence example 1) every 5 iterations and 2) every 10 iter-
ations. All other iterations use LC sampling a with fixed threshold
Td.

4. EXPERIMENTS

To develop a sound classification model to detect our artifact noise,
we conducted a set of experiments using the AL framework de-
scribed in Section 2. In Section 4.2, we present a systematic evalu-
ation of the query strategies described in Section 3 using one expert
annotator, who has the domain knowledge and experience of iden-
tifying target sound. In Section 4.3, we compare the best strategy
from the evaluation to baseline methods. In Section 4.4, we investi-
gate whether models trained with non-expert annotators can achieve
similar performance as our expert-trained models. And lastly, in Sec-
tion 4.5, we qualitatively evaluate our best AL-trained model using
an unlabeled dataset to investigate the generalizability of the model.

4.1. Data preparation and experimental setup

To train models with AL we need an unlabeled dataset as a sam-
pling pool, and to train models without AL (i.e., our reference base-
line) we need a labeled dataset. We created our labeled dataset by
manually labeling 300 positive (i.e., with the artifact noise present)
and 300 negative one-second audio clips which were evenly sam-
pled from 15 different SONYC sensors. The total 600 labeled clips
were conditionally partitioned by sensor ID into balanced training,
validation, and test sets with a 3:1:1 ratio for 5-fold cross-validation.
Within each training set, two clips, one positive and one negative,
were randomly drawn as the initial training data for the AL exper-
iments. We kept the initial training set extremely small to more
clearly see the performance trends when comparing models. The un-
labeled dataset was built by randomly sampling 100,000 one-second
audio clips from the remaining sensors.

We extracted input features from both datasets using a pre-
trained VGGish audio model [26]. The VGGish audio classification
model was trained over the YouTube-8M dataset and can be used
as a pre-trained feature embedding model to generate a compact,
discriminative 128-dimensional feature vector.

For each experiment, we ran 5-fold cross validation to estimate
model performance, using F-measure as the evaluation metric. We
tuned the decision threshold of the random forest model after each
training iteration using mean model performance on the validation
set, and we reported the mean model performance on the test set.

4.2. Comparing query strategies

To compare query strategies and their variations, we trained separate
models for each query strategy variation using the training frame-
work described in Section 2. For each model, the mean and max-
imum F-measure within 100 training iterations are reported in Ta-
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Query Strategy Mean Max Iteration
LC, fixed Td 0.904 0.947 77
LC, varied Td 0.891 0.924 86
SSAL, TSSL = 0.95 0.857 0.910 24
SSAL, TSSL = 0.98 0.892 0.928 56
AC, fHC = 1/5 0.897 0.939 48
AC, fHC = 1/10 0.913 0.962 90

Table 1. Mean F-measure, maximum F-measure, and the iteration
where maximum is reached from the classifiers trained with different
AL query strategies.

ble 1, as well as the iteration at which the maximum performance is
reached.

First, we compared LC with fixed Td and varied Td. The results
in Table 1 (first two rows) show that training with fixed Td gives
better model performance. We noticed during training that queries
sampled with varied Td are often biased towards negative examples
compared to those sampled with fixed Td. Classifiers trained with
varied Td quickly learn about negative examples and become much
more confident in their negative predictions. This lowers the effec-
tive decision threshold and reinforces the situation since new queries
are subsequently sampled using the updated decision threshold. Fix-
ing the decision threshold at 0.5 for sampling forces the model to
learn about positive and negative examples equally and return more
balanced queries.

Second, we compared SSAL with two different TSSL. The re-
sult shown in the Table 1 (middle two rows) indicates that adding an
SSL stage does not improve model performance in our case. Higher
TSSL values result in better performance, but when testing on TSSL

higher than 0.98, the positive predictions do not have high enough
confidence to update the training set in the SSL stage. Therefore, it
is equivalent to AL without SSL. It has been shown in previous work
that TSSL needs to be carefully tuned for specific tasks in order to
improve performance [19]. SSL also generally requires an accurate
initial model, otherwise adding too many false predictions can sig-
nificantly affect model performance. This is especially crucial in our
case where the initial model is trained on only two labeled examples,
and only one ground truth example is given in each iteration.

Lastly, we compare AC with two different sampling frequencies
for high-confidence instances. Table 1 (bottom two rows) shows that
sampling one high-confidence instance every 10 iterations achieves
better model performance than sampling it every 5 iterations. While
every 10 iterations seems frequent enough to correct errors, every 5
iterations may be too frequent, reducing the average information per
label and hindering learning.

Overall, we found the best model performance when training
using the AC strategy with fHC = 1/10. Our newly proposed
certainty-based strategy enables annotators to correct possible mis-
takes from the model, which helps the model generalize better on
unseen data. We use this top-performing AC strategy to train the AL
models in all of the remaining experiments.

4.3. Comparing AL and baseline methods

Next, we compare AL to two baseline methods. We use random sam-
pling as the first baseline method, using the same framework as AL:
two initial training examples and 100 training iterations. At each it-
eration, the query is randomly sampled from the unlabeled data pool
instead of using certainty-based sampling. We also trained a refer-
ence model on the entire labeled set under the same partitioning and
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Fig. 1. Model performance at each training iteration for different
training methods.

Training Method Mean Max Iteration Positive
Queries

AL, expert annotator 0.913 0.962 90 42%
Random Sampling 0.875 0.908 98 3%
Reference Model 0.957 0.957 - -
AL, non-expert annotators 0.903 0.937 73 43%

Table 2. Mean F-measure, maximum F-measure, the iteration where
maximum is reached, and the percentage of positive queries from the
classifiers trained with AL and baseline methods.

cross-validation setup to demonstrate the best possible performance
using all the 600 labeled examples.

Figure 1 shows model performance at each training iteration for
different training methods. The model trained with AL and expert
annotator outperforms the model trained with random sampling, and
soon reaches a comparable performance to the reference model af-
ter 50 training iterations. Table 2 shows the mean and maximum
F-measures within 100 iterations, and the iteration when the best
performance occurred for each model. The classifier trained with
AL and expert annotator reaches its best performance at iteration
90, which means the model is only trained on 92 labeled examples,
including the two initial training examples. Although the classifier
was trained on far fewer labeled examples than the reference model
(600 examples), AL effectively allows the model to utilize informa-
tion from a much larger unlabeled data pool, which produces more
efficient training.

Table 2 also shows the percentage of positive examples in the
100 queries during training. AL returns a much more balanced set
of queries than random sampling. More balanced queries lead to a
more efficient annotation process and a more robust model.

4.4. Annotator generalizability

We recruited 15 non-expert annotators to test whether models trained
by non-experts could achieve similar performance as those trained
by expert annotator. Each participant annotated one fold, resulting
in a total of three annotations per fold. We calculated the optimal de-
cision threshold per iteration based on best mean F-measure across
all 15 models (3 models per fold, 5 folds in total). Results shown in
Figure 1 demonstrate that the models trained with expert and non-
expert annotators result in similar performance trends. Although the
non-expert trained models never reach reference performance as the
expert-trained models do, they still perform better than the expert-
trained random model. Table 2 shows the average percentage of
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(e) Power spectrogram, B
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Fig. 2. (a)–(c) t-SNE plots colored by predicted labels from models at training iteration 1, 20, and 100. Orange: predicted positive; Green:
predicted negative. (d)–(f) Power spectrogram from one of the excerpts sampled from region A, B, and C.

positive queries returned by AL during the 100 training iterations,
also showing a similar trend to that of expert annotator.

4.5. Qualitative evaluation on unlabeled data

To investigate the generalizability of the model, we used our best-
performing noise classifier trained with AL to predict labels for the
unseen, unlabeled data. Since there is no ground truth, we used t-
SNE [27] to visualize the results in Figures 2(a)–(c). For each plot,
we used t-SNE to project 20,000 data points (sampled from the unla-
beled data pool) to a two-dimensional space, using VGGish features
as the t-SNE input representation and a t-SNE perplexity of 30. The
color of each data point is assigned based on its label predicted by
the classifier: orange for positive, green for negative. Figures 2(a)–
(c) visualize model predictions at three different training iterations:
1, 20, and 100. The distribution of predicted labels changes while
training iterations increase, and the positive predictions converge to
a small number of clusters.

We listened to 10 randomly selected audio excerpts from the 3
regions indicated in Figure 2(c). A spectrogram from one of the ex-
cerpts in each region is also shown respectively in Figures 2(d)–(f).
All of the excerpts sampled from regions A and B contain the target
artifact noise. The noise in region A is very prominent, resulting in
the clear harmonic bands in upper midrange on the spectrogram as
shown in Figure 2(d). The noise in region B is softer than the noise
in region A and is accompanied by other environmental sounds in the
lower frequency range. Its spectrogram in Figure 2(e) shows fainter
harmonic bands with energy focused on lower frequencies. Excerpts
sampled from region C do not contain the artifact noise—they are
environmental sounds in a similar frequency range as the noise. The
spectrogram in Figure 2(f) shows that although there is no harmonic
pattern, there is also energy distributed in the upper midrange. This
could explain why there are many positive predictions in region C in
early training iterations.

This qualitative evaluation shows how the classifier learns and

refines its prediction during the AL process. It also shows that the
AL-trained classifier is generalizable to unseen data and can identify
target artifact noise within different contexts, enabling us to explore
the target noise in the SONYC data.

5. CONCLUSION

In this work, we used active learning to reduce annotation costs for
an idiosyncratic sound classification task for which existing datasets
were not usable. We developed a target artifact noise classifier with
unlabeled audio data by using a pool-based active-learning frame-
work with actual human annotators in the loop. In doing so, we
proposed a new certainty-based query-sampling strategy, alternating
confidence sampling, and found that it improved model performance
over two other certainty-based strategies. This new query sampling
strategy allows annotators to check and fix classification errors by
occasionally sampling high-confidence instances. We found that
models trained with the proposed strategy outperform a baseline
model trained with random sampling, and with far fewer labeled
training examples, they reach performance comparable to the ref-
erence model. Using active learning, the artifact noise classifier
reached an F-measure of 0.962 after training on only 92 labeled ex-
amples. We also evaluated our sampling strategy by training a model
with 15 non-expert annotators and showed that it performed simi-
larly to the model trained with one expert annotator. Lastly, we qual-
itatively showed that our noise classifier trained with active learn-
ing is generalizable to unseen data and can identify the target noise
within different contexts. This work showed that active learning can
improve training efficiency and significantly reduce annotation ef-
fort in a real-world scenario. Future works include analyzing the
effectiveness of alternating confidence sampling quantitatively, and
experimenting more query strategies with non-expert annotators. We
hope this work will encourage others to utilize active learning when
developing costly problem-specific datasets.

883



6. REFERENCES

[1] Paul Gaunard, Corine Ginette Mubikangiey, Christophe Cou-
vreur, and Vincent Fontaine, “Automatic classification of envi-
ronmental noise events by hidden markov models,” in Proceed-
ings of the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP, 1998, pp. 3609–3612.

[2] Antonio J. Torija and Diego P. Ruiz, “Automated classification
of urban locations for environmental noise impact assessment
on the basis of road-traffic content,” Expert Syst. Appl., vol.
53, no. C, pp. 1–13, July 2016.

[3] Herve Glotin, Julien Ricard, and Randall Balestriero, “Fast
Chirplet Transform to Enhance CNN Machine Listening - Val-
idation on Animal calls and Speech,” 2016.

[4] Lior Shamir, Carol Yerby, Robert Simpson, Alexander M. von
Benda-Beckmann, Peter Tyack, Filipa Samarra, Patrick Miller,
and John Wallin, “Classification of large acoustic datasets us-
ing machine learning and crowdsourcing: Application to whale
calls,” The Journal of the Acoustical Society of America, vol.
135, no. 2, pp. 953–962, Feb 2014.

[5] Ichiro Fujinaga and Karl MacMillan, “Realtime recognition of
orchestral instruments.,” in ICMC, 2000.

[6] Janet Marques and Pedro J Moreno, “A study of musical instru-
ment classification using gaussian mixture models and support
vector machines,” Cambridge Research Laboratory Technical
Report Series CRL, vol. 4, 1999.

[7] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal,
and Marvin Ritter, “Audio set: An ontology and human-labeled
dataset for audio events,” in Proc. IEEE ICASSP 2017, New
Orleans, LA, 2017.
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