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ABSTRACT

This paper studies Acoustic Event Detection (AED) systems
and the problem of their rapid and easy customisation to ar-
bitrary deployment scenarios. Due to inherent challenges re-
lated to annotation processes of AED data (time-consuming
and error-prone due to often unclear time-stamping), most of
the available large-scale datasets for AED are released with
weak clip-level labels, which also affects how one should de-
sign weakly-supervised training procedures. In this paper,
we investigate a teacher-student training approach of learning
low-complexity student models, using large teachers. We first
show that state-of-the-art performance can be achieved by a
Convolutional Neural Network (CNN) model with appropri-
ate attention mechanism. Then we describe a framework that
enables learning arbitrary small-footprint, generic or domain-
expert, AED systems from generic teachers. We carry exper-
iments on Audioset - a large-scale weakly labelled dataset of
acoustic events.

Index Terms— Acoustic Event Detection, Weakly-
supervised training, Teacher-Student Training, Attention

1. INTRODUCTION

Acoustic Event Detection (AED) or Sound Event Detection
systems aim to understand the content of acoustic signals
by automatically predicting single or multiple simultaneous
events. It has attracted much interest due to its wide range
of potential applications in activity monitoring, multime-
dia inspection and public surveillance, etc.. The application
of AED, however, has been limited due to the insufficient
amounts of training data and their relatively small coverage
of event classes. Most relevant datasets used to be domain-
specific [1,2]. Recently, Google released a large-scale corpora
Audioset [3], in which events are annotated at the clip level
(up to 10 seconds long each). Precise timing information is
however not available, requiring weakly supervised learning
techniques that are capable of recovering higher temporal
resolution for runtime deployments.

Weak-label problem is typically approached by either ap-
plying a strong label assumption (SLA) where the annotations
are assumed to be valid across the entire clip [4], or as a Mul-
tiple Instance Learning (MIL) problem, in which case the au-

dio clip is treated as a bag of units with smaller time duration
(i.e. segments) [5]. In this paper, we apply an attention mech-
anism similar to the system proposed in [6] that learns how to
attend to relevant parts of audio clips given the class, and we
demonstrate state-of-the-art performance on Audioset.

Large-scale AED systems are expected to operate accu-
rately for different subsets of detected events and across var-
ious acoustic conditions, often requiring large and complex
underlying models. This becomes a challenge when the goal
is an embedded deployment on a device with limited com-
pute and memory footprint. In this paper, our goal is to build
small-footprint AED systems that can be quickly tailored to
the task of interest (i.e. customisable decision space, and flex-
ibility in temporal resolution), and can run with low latency.
To achieve this goal, in contrast to other published systems
such as [6] that are based on embeddings produced by a pre-
trained neural feature extractor, we build end-to-end systems
using standard acoustic features as input. End-to-end systems
allow us to conduct Teacher-Student (TS) training to learn
a small model that significantly reduces the overall resource
footprint while maintaining a good performance.

The primary contributions of this paper include 1) build-
ing an end-to-end AED system with attention mechanism
that achieves state-of-the-art performance; 2) proposition of
a teacher-student training framework for learning generic or
domain-expert small-footprint AED systems.

2. RELATED WORKS

While AED has been historically addressed using Gaussian
mixture models [7], hidden Markov models [8] or support
vector machines [9], typically trained on mel-frequency cep-
stral coefficients acoustic features, recent progress in deep
neural networks (DNN) has inspired many DNN-based AED
systems, including variants of both feed-forward (convolu-
tional) (CNN) and recurrent neural networks (RNN) [4, 5, 10,
11]. Hershey et al. [4] compares several AED-tuned CNN
architectures that were proved to work well in computer vi-
sion tasks, i.e. AlexNet [12], VGG [13], Inception-V3 [14]
and ResNet-50 [15]. CNNs were found to outperform fully
connected non-recurrent models, and the state of the art per-
formance on Audioset (with 485 classes) was obtained with
embeddings produced by the ResNet-50 architecture. Above
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works rely on the SLA approach assuming the presence of
reliable labels in all segments in a clip, which particularly de-
grades the performance for temporally short events (i.e. gun-
shots, glass breaking, doors). Further analyses of the effect of
SLA can be found in [16] where the authors find that model
performance tends to degrade proportionally to how short an
event in a clip is (under the SLA assumption). This issue can
be mitigated with the attention mechanism [6, 17], where one
or more attention modules parallel to the classification layers
are co-learned to infer the unobserved latent variables repre-
senting the relative importance of each segment. While our
attention model is similar to the system in [6], our models
were trained directly on raw acoustic features rather than em-
beddings.

Teacher-Student (TS) training for knowledge distillation
has been proposed in [18–20] to learn a model with fewer pa-
rameters to approximate the function transformation learned
by the large model. TS training has been applied successfully
in automatic speech recognition [19] and speaker recogni-
tion [21]. To the best of our knowledge, our work is the first to
study knowledge distillation for weakly-supervised AED sys-
tems with attention using Audioset labels, including in-place
domain specialisation of student models to arbitrary subsets
of the original 527 Audioset classes.

3. APPROACH

RNNs are capable of modelling long-term sequential patterns
[22] and bidirectional RNNs were in particular proven to be
effective for AED [23, 24], but they require the entire tempo-
ral sequence to be scanned, incurring runtime latency. Fur-
thermore, while many models have been proposed for AED
under the weakly-labelled premise, little effort has been put in
place to study lightweight models under constrained runtime
latency regime. In this work, we propose a weakly-supervised
TS training framework for AED, which, depending on the de-
sign choice, transforms a large model to small models that re-
ceive inputs of an arbitrarily short duration independent of the
clip length used in training, thereby providing more accurate
temporal information and the student can be easily adapted to
work with only a subset of classes produced by the large-scale
teacher model.

3.1. CNN Model with Attention

Our proposed teacher CNN model with attention is depicted
in Figure 1. Given the m-th audio clip, represented as a ma-
trix of log-mel spectrogram features X(m) ∈ RW×F , where
W and F are the number of log-mel frames and mel-bins ex-
tracted from the clip, we divide X(m) into a group of seg-
ments each as X(m)

n ∈ RT×F , n = 1, ..., B with B = W/T .
X

(m)
n forms an input acoustic feature to a CNN.

In this work, we use the same VGGish CNN that was used
to generate the published Audioset embeddings [4]. To re-
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Fig. 1. Top: Attention CNN teacher model architecture; Bot-
tom: Connection of a feed-forward layers in block F.

cap, block C1 to C4 each is followed by a 2× 2 max pooling
layer and ReLU activation with 3× 3 filters used throughout.
Specifically, the number of filters in each block is {C1: 64;
C2: 128; C3: 256, 256; C4: 512, 512}. The output of C4
is flattened and fed into block E that implements three feed-
forward layers of 4096, 4096 and 128 dimensions respectively
and all with ReLU activation, resulting in an 128-dimensional
embedding.

After the VGGish CNN, all segment-level embeddings
from the m-th clip, E(m)

n , n = 1, ..., B, are fed into the block
F, implemented as two hidden feed-forward layers with ReLU
activations (1000 units each) g(m)

n = f(E
(m)
n ) followed by

two parallel output layers. The first output produces sigmoid
normalised scores h(m)

n = γ(g
(m)
n ), while the second atten-

tion weights e(m)
n = ω(g

(m)
n ). The attention module uses one

1000 unit ReLU hidden layer followed by a softmax output
layer. Finally, the clip-level posteriors are obtained by com-
bining the segment-level outputs in the block A as follows:

A(X(m))=
1∑B

n=1e
(m)
n

B∑
n=1

e(m)
n ·h(m)

n =

B∑
n=1

α(m)
n ·h(m)

n (1)

In a weakly supervised training the ground truth labels are
given at the clip level and multiple events can be simultane-
ously present in a clip. Therefore, we use a multi-label cross-
entropy objective for training after the clip-level posteriors are
obtained. Eq. 2 below shows the binary cross-entropy loss for
the class k.

l(p
(m)
k , y

(m)
k ) = −y(m)

k ·log(p(m)
k )−(1−y(m)

k )·log(1−p(m)
k )

(2)
where pk ∈ [0, 1] is the kth element of the posterior output
A(X(m)) from Eq. (1) and yk is the hard label that is either
1 if kth event is present and 0 otherwise. The multi-class
objective is obtained by taking the mean across all considered
classes:

L(X(m), y(m)) =
1

Nc

Nc∑
k=1

l(p
(m)
k , y

(m)
k ), (3)
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Fig. 2. Teacher-Student training framework: the same
segment-level input mel-log spectrograms X̂ is fed to both
the teacher and student models and the student learns to ap-
proximate h generated by the teacher.

where Nc = |S| denotes the cardinality of the target label set.
Such a CNN architecture has a large modelling capacity,

which comes at a high memory and computation cost of ap-
proximately 7.5× 107 parameters.

3.2. Teacher-Student Training

For many practical AED applications, one typically seeks for
a model characterised by a small runtime footprint, and tai-
lored to the given deployment domain (i.e. only few classes
are required). Those two objectives can be achieved together
by the TS training framework. Specifically, a teacher model
may be trained and used to produce soft targets on a transfer
data set. A small student model then learns to mimic predic-
tions from the teacher.

In a student model, we abandon the two-level hierarchy
with “clips” against “segments”. In training, data is presented
as independent segments to the model. We treat the nth seg-
ment in clip X(m) independently, i.e. B = 1. Thus, Eq.(1)
boils down to

A(X(m)
n ) = α(m)

n · h(m)
n = h(m)

n (4)

as α(m)
n = e

(m)
n /

∑B
n=1 e

(m)
n = 1. Given Eq.(4), Figure 2

shows our proposed TS training framework where both the
trained teacher and the to-be-trained student model are condi-
tioned on the same segment input. The student is then tasked
to approximate the soft targets generated by the teacher model
by minimising the Kullback-Leibler Divergetnce (KLD) be-
tween its output ĥ(m)

n and the soft target h(m)
n .

With the proposed TS framework, one can quickly train
the student models to work on a sub-set of classes of interest,
i.e. Ŝ ⊆ S by extracting only the interested classes from the
generated soft targets. Furthermore, since neither weak nor
strong labels are required for this TS training, one may also
make use of the huge amount of unlabelled data in the wild
by leveraging the generalisation power of the teacher model.
Finally, during offline testing, a clip can be easily batched
along segments with overlapping shifts before presenting to
the model to further reduce latency.

4. EXPERIMENTS AND RESULTS

4.1. Datasets

We carry our experiments on a large-scale weakly labelled
Audioset [3] corpora. It has three partitions: (1) balanced
training set (approx. 20K clips), (2) an evaluation set (ap-
prox. 20K clips) and (3) an unbalanced training set (approx.
2M clips). Hereafter, we will refer to those as Audioset-bal,
Audioset-eval and Audioset-unbal, respectively. In addition,
we sampled a balanced set of 15K clips from Audioset-unbal
and made Audioset-val for validation purposes. In total,
Audioset contains approximately 2 million audio clips with
527 classes following a hierarchical ontology. Since the
raw waveforms were not readily available (only embeddings
from a pretrained VGGish model are officialy released), we
crawled the corresponding raw audios from the Internet.
Some clips were not available at the time of download, thus
our target dataset is approximately 8% smaller when com-
pared to the original.

To investigate domain-expert scenarios where the model
is tasked to detect only a small number of classes, we man-
ually selected 8 representative 10-class subsets. For each
subset, we extracted in-domain samples from Audioset-bal,
Audioset-val and Audioset-eval and formed domain-trains,
domain-vals and domain-evals where s = 1, .., 8. Whereas
the first 5 subsets are characterised by highly distinctive
classes that differ in annotation quality as assessed by Google,
the other 3 subsets contain similar sound events correspond-
ing to musical instruments, bells and human voices.

4.2. Experiments

Log-mel features are extracted with 25ms window and 10ms
hop size using 64 mel-filters per frame, and each segment
consists of 96 such frames, i.e. T = 96 and F = 64 (Sec-
tion 3.1), as a result our model updates detection scores every
0.96-second.

We trained two end-to-end AED teacher models. The first
is a CNN model with attention as described in Section 3.1,
and the second is trained with SLA, which resembles the same
system architecture but with the attention module (block F in
Figure 1) removed. To speed up training, the 5-block VGGish
feature extractor is bootstrapped from a checkpoint pretrained
on YouTube-8M [4] and fine-tuning is enabled during the en-
tire training process. Specifically, we trained these two mod-
els using both Audioset-bal and Audioset-unbal for 3 epochs
and the results are reported on Audioset-eval.

To evaluate the proposed TS training framework de-
scribed in Section 3.2, we compare three small-footprint
models of the same architecture trained using weak labels by
(1) enforcing SLA, (2) distilling from the teacher trained with
SLA and (3) distilling from the attention model respectively.
These experiments are repeated for both full generic Audioset
(527-class) and the 8 domain-expert scenarios (10 classes
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each). The model consists of 3 blocks of CNN followed by 4
fully connected feed-forward layers. Given that 3 × 3 filters
and ReLU activation are applied throughout the CNN blocks,
the number of filters in each block is {C1: 16, 32, 64; C2:
64; C3: 128}. C1 and C2 are each followed by a 2 × 2 max
pooling layer and the C3 is finished by a global max pool-
ing, resulting in a 128-dimensional output. The activations
are then connected to a 4-layer DNN with 64, 256, 256, and
N̂c units respectively, where N̂c is the number of the output
classes. All hidden layers have ReLU non-linearity, except
for the output layer that uses Sigmoid activation. Depending
on N̂c, the number of parameters of the student model is
approximately 3× 105. We train the generic / domain-expert
small models using Audioset-bal / domain-trains until con-
vergence on Audioset-val / domain-vals with a patience of 15
epochs and report results on Audioset-eval / domain-evals.

Model performance is evaluated by the balanced average
Area Under Curve (AUC) of the Receiver Operating Curve
(ROC) and the balanced mean Average Precision (mAP) [4].
While the teacher model with attention uses the segment-to-
clip combination strategies described in Section 3.1 and Fig-
ure 1, for the teacher model trained with SLA and student
models we derive clip-level output by averaging the predicted
segment-level scores across a clip. Reported domain-expert
student model results are an average over the eight represen-
tative 10-class subsets.

4.3. Results

The results of teacher models are shown in Table 1. The atten-
tion model t-CNN-ATT outperforms the model trained with
SLA, i.e. t-CNN-SLA, in terms of both AUC and mAP.

Model Name AUC mAP
t-CNN-SLA 0.961 0.332
t-CNN-ATT 0.965 0.349

Table 1. Comparison of teacher models.

Table 2 reports the performance of the three small-
footprint models, where s-CNN-1 is directly trained from
the clip-level weak labels by enforcing SLA across segments,
s-CNN-2 and s-CNN-3 are distilled from t-CNN-SLA and
t-CNN-ATT teacher models respectively.

4.4. Analysis

Our end-to-end CNN model with attention (t-CNN-ATT)
achieves 0.965 / 0.349 of AUC / mAP, outperforming the
Google baseline (with 485 classes) at 0.959 / 0.314 [4]. In ad-
dition, t-CNN-ATT directly trained on raw acoustic features
gives a better mAP when compared to the attention model
trained on VGGish embeddings (0.965 / 0.327) [6]. Consid-
ering also the competitive performance in the model trained
with SLA (t-CNN-SLA), we believe the end-to-end training
approach, i.e. fine-tuning the VGGish blocks as the entire

Teacher Model Model Name AUC mAP

N/A s-CNN-1 0.917 0.139
s-CNN-1(domain) 0.796 0.479

t-CNN-SLA s-CNN-2 0.930 0.197
s-CNN-2(domain) 0.879 0.572

t-CNN-ATT s-CNN-3 0.937 0.211
s-CNN-3(domain) 0.882 0.582

Table 2. Comparison of small-footprint models

model is learned, has contributed to the increase of model
robustness.

In TS training for the 527-class student models, we
utilised teacher targets from the t-CNN-SLA and t-CNN-
ATT models. Compared to student model training from
scratch with SLA, i.e. s-CNN-1, the student model with the
same number of parameters (s-CNN-2) benefits from the soft
targets provided by the teacher model, and the resultant AUC
and mAP are 0.013 and 0.058 higher respectively. And dis-
tillation from the teacher model with attention has further
improved AUC and mAP by 0.007 and 0.014. Provided that
the student is less than 0.05% the size of the teacher mod-
els and only 1% of the original teacher training data is used
for distillation, moderate degradation in student performance
compared to the teachers is expected.

In the study of domain-expert student models, we focus
on the ubiquitous application of a single, generic and un-
adapted teacher model. Domain-expert student models with
knowledge distilled from t-CNN-SLA on average leads to
an increase of 0.083 / 0.093 of AUC / mAP compared to a
model trained from weak labels with SLA. More importantly,
it is interesting to note that, s-CNN-3(domain) – the student
model distilled from the unadapted teacher model t-CNN-
ATT – shows 0.003 / 0.010 further increase of AUC / mAP
compared to s-CNN-2(domain), demonstrating the effective-
ness of attention mechanism in guiding the models to produce
more robust soft targets for knowledge distillation, also at the
segment-level.

5. CONCLUSION

In this paper we present a study on teacher-student training for
AED using Audioset. An end-to-end CNN model with atten-
tion mechanism to remedy the weak-label issue was first in-
troduced, with which we showed that state-of-the-art perfor-
mance can be achieved. Furthermore, teacher-student training
was explored to learn both generic and domain-expert small-
footprint student models. It is found that students distilled
from attention-equipped teacher model have higher robust-
ness for both generic and domain-specific tasks. A study on
improving the quality of knowledge distillation, potentially
by a more effective use of the attention weights provided by
the teacher model, along with an investigation on the perfor-
mance of student models operating at the segment-level, will
both be part of the future work.
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