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ABSTRACT
This paper proposes a scene-dependent anomalous acoustic-event
detection based on conditional WaveNet and i-vector. The WaveNet
builds normal acoustic event models by exhaustive learning of time-
domain signals in the public space to provide scene-independent
anomaly detection. I-vectors are used as additional features to de-
scribe acoustic scenes, where the input signals are observed, to com-
plement the WaveNet. The proposed method can detect anomalous
acoustic-events in environments whose acoustic scenes vary depend-
ing on time, location, and surrounding environment. Evaluations
with data recorded from the real environment demonstrate that the
proposed method achieved as much as 15 pt higher F-measure than
LSTM and AE. The difference in F-measure by the WaveNet with
and without i-vector turned out to be 1.5 pt.

Index Terms— WaveNet, Anomaly detection, i-vector, Anoma-
lous sound event detection

1. INTRODUCTION

Anomalous acoustic-event detection methods based on a DNN (deep
neural network) have been actively investigated in recent years [1, 2,
3]. Among others, a WaveNet based method by Hayashi et al. [4]
achieved good detection performance. WaveNet [5] is a predictor
which receives a fixed length time-domain signal and outputs an a
posteriori probability distribution of the next sample amplitude. It
precisely trains models of time-domain signals. Hayashi et al. builds
normal acoustic event models with the WaveNet by exhaustive train-
ing of signal data obtained in the public space. An input is detected
as an anomalous acoustic-event when the a posteriori probability
distribution given by the WaveNet is not sufficiently sharp. It is be-
cause a flat a posteriori probability distribution means that there is
no acoustic event model in the WaveNet to describe an anomalous
acoustic-event which has not been encountered during the training
process.

However, WaveNet cannot detect a scene-dependent anomalous
acoustic-event in environments whose acoustic “scene” changes with
time, location, or surrounding environment. WaveNet has no de-
scriptor for a scene and considers same acoustic events in different
scenes to be identical as illustrated in Fig.1. A laughter in the day-
time is normal whereas one in the late night is an anomaly to be
alarmed. It indicates that an acoustic event in an environment with a
time-varying scene cannot be detected by WaveNet. In such an en-
vironment, dedicated acoustic event models for different times need
to be learned by training, however, computational cost and the mem-
ory size will be problems in reality. Komatsu et al. proposed an
anomaly detection assuming periodicity over an entire day [6]. Nev-
ertheless, it cannot be applied to general changing scenes. Suppose
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Fig. 1. Same acoustic-event in different scenes have different mean-
ing.

a stadium. At the same time and location, the acoustic scene is sig-
nificantly different if there is an American football match, a Taylor
Swift [7] concert or nothing. An anomalous acoustic-event detection
incorporating the acoustic scene is necessary.

For scene description, i-vectors are widely used in acoustic
scene clasification [8, 9, 10, 11]. I-vectors, which are features orig-
inally developed for speaker verification, are obtained by factor
analysis of acoustic feature distribution difference between a uni-
versal background model (UBM) and a model for each utterance.
They provide high accuracy in speaker verification and are popular
in applications such as music genre classification [12], and language
classification [13]. I-vectors are promising for scene description in
anomalous acoustic-event detection.

This paper proposes an anomalous acoustic-event detection
based on conditional WaveNet and i-vector. WaveNet provides
scene-independent anomaly detection and i-vector complements the
lack of scene description. The next section presents details of the
new method and in Section 3 evaluation results demonstrate the
validity of the proposed method.

2. THE PROPOSED METHOD

An overview of the proposed method, separated into training and
detection part, is shown in Fig. 2. In the training part, a signal
waveform x = {x1, x2, . . . , xN} is divided into 25-ms-blocks with
96% overlap to calculate a 40 dimensional log mel spectrum and
20 dimensional MFCCs (Mel-Frequency Cepstrum Coefficients).
MFCCs are used to i-vector extractor training, as described in Sec-
tion 2.2, and 60-dimentional i-vector is extracted from MFCCs
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Fig. 2. Blockdiagram of the proposed method.
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Fig. 3. Time-resolution adjustment

within a 30 second long segment. The proposed method employs
an i-vector to describe a scene of a segment of each input signal
waveform. An extracted 40 dimensional log mel spectrum and a
60 dimensional i-vector are concatenated and used as an auxiliary
feature h for WaveNet. The statistics of h are calculated over train-
ing data to perform global normalization, making a mean and a
variance of each dimension of the features 0 and 1, respectively.
A time-resolution adjustment procedure shown in Fig. 3 is per-
formed to ensure that the time resolution of the features is same as
that of the waveform signal. The waveform signal x is quantized
and then converted into a sequence of one-hot vectors. Finally,
WaveNet is trained with the sequence and the features, as described
in Section 2.1.

In the detection part, as in the training part, the log mel spec-
trum and the i-vector features are extracted from the input waveform
signal and normalized using the statistics of the training data. The
input waveform signal is also quantized and then converted into a se-
quence of one-hot vectors. WaveNet then calculates a posteriogram
(a sequence of posterior distributions) with the sequence and the fea-
tures. Note that, since WaveNet is used as a finite impulse response
(FIR) filter as explained in Section 2.1, this process is much faster
than the autoregressive generation process of the original WaveNet.
Next, an entropy of each posterior distribution is calculated over the

posteriogram. We then perform thresholding for a sequence of en-
tropies to detect anomalies and three kinds of post-processing are
performed to smooth the detection result, as described in Section 2.3.

2.1. WaveNet

To directly model acoustic patterns in the time domain, the proposed
method uses WaveNet [5], which is a generative model based on
a convolutional neural network. The conditional probability of a
waveform x = {x1, x2, . . . , xN} given the auxiliary features h is
factorized as a product of conditional probabilities as follows:

p(x|h) =
N∏

n=1

p(xn|x1, x2, . . . , xn−1,h). (1)

For the auxiliary feature h, the log mel spectrum is used in the con-
ventional method [4]. In addition to the log mel spectrum, the pro-
posed method employs i-vector for h to describe the scene where
the input waveform x is occurred. WaveNet approximates the above
conditional probability by canceling the effect of past samples of a
finite length as follows:

p(xn|x1,x2, . . . , xn−1,h) '
p(xn|xn−R−1, xn−R, . . . , xn−1,h),

(2)

where R is the number of past samples to take into account, which
is known as the “receptive field”. In order to generate a waveform
directly, it is necessary to secure a very large receptive field, which
requires huge computational resources. WaveNet can achieve a large
receptive field efficiently through the use of “dilated causal convolu-
tions”, which are convolutions with holes, so that the output does not
depend on future samples. This architecture not only secures very
large receptive fields, but also significantly reduces computational
cost and the number of model parameters. The overall structure of
WaveNet is shown in Fig. 4.

WaveNet consists of many residual blocks, each of which con-
sists of 2× 1 dilated causal convolutions, a gated activation function
and 1× 1 convolutions. The gated activation function is formulated
as follows:

z = tanh(Wf,k ∗ x+Vf,k ∗ f(h))�
σ(Wg,k ∗ x+Vg,k ∗ f(h)),

(3)

where W and V are trainable convolution filters, W ∗x represents a
dilated causal convolution, V ∗ f(h) represents a 1× 1 convolution,
� represents element-wise multiplication, σ represents a sigmoid
activation function, subscript k is the layer index, subscripts f and
g represent the “filter” and “gate”, respectively, and f(·) represents
the function which transforms features h to have the same time reso-
lution as the input waveform. The waveform signal is quantized into
8 bits by µ-law algorithm [14] and converted into a sequence of 256
dimensional (= 8 bits) one-hot vectors.

Upon training, WaveNet is used as an FIR filter, i.e., it predicts
a future sample xt from observed samples xt−R−1:t−1. WaveNet
is optimized through back-propagation using the following cross-
entropy objective function:

E(Θ) = −
T∑

t=1

C∑
c=1

yt,c log ŷt,c (4)

where yt = {yt,1, yt,2, . . . , yt,C} represents the one-hot vector of
the target quantized waveform signal, ŷt = {ŷt,1, ŷt,2, . . . , ŷt,C}
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Fig. 4. WaveNet

represents the posterior distribution of the amplitude class, t and i
represent the index of the waveform samples and their amplitude
class, respectively, T and C represent the number of waveform sam-
ples and number of amplitude classes, respectively.

2.2. I-vector

An i-vector is employed as a new feature for scene description that
is what kind of sounds occurred in the input-signal segment. The
proposed method extracts the i-vector from a set of frame-level fea-
tures, such as MFCCs, in a short segment. Fig.5 illustrates the i-
vecotr, which is a low-dimensional representation of the distribu-
tion difference between a universal background model (UBM) and
a specific model for each sound segment. The UBM is trained on
MFCCs of an entire data set. The specific model for each segment
is obtained by adapting UBM using MFCCs in the segment, whose
length is set as 30 seconds in the proposed method. An i-vector is a
low-dimensional representation of blue arrows in Fig. 5 obtained by
factor analysis applied to the difference between the UBM and the
segment-specific model.

As described in [15], the factor analysis is used to define a new
low-dimensional space referred to as a total variability space. In this
new space, a given sound segment is represented by a new vector
named i-vector. Given a sound segment, its feature vector such as a
GMM supervector M is written as follows,

M = m+Tw, (5)

where n is a scene-independent supervector typically taken from a
UBM. A total variability matrix T is a rectangular matrix and w is
an i-vector. The i-vector for a given sound segment u can be obtained
by

wu =
(
I+T>Σ−1N(u)T

)−1

T>Σ−1F(u). (6)

This equation loads two statistics N(u) and F (u) which have ele-
ments written as follows. When a Gaussian mixture model is used
as a UBM, elements of UBM mixture component c are

Nc(u) =

L∑
t=1

p(c|ut), (7)

Fc(u) =

L∑
t=1

p(c|ut)(ut −mc), (8)

UBM

Distribution of
30 sec. segment

12:00 am 12:00 pm 12:00 am

Fig. 5. An i-vector is a low-dimensional representation of two blue
arrows which represent a difference between UBM and a segment-
specific model.

where ut is a t-th frame of the sound segment u with L frames,
and mc is a mean of the component c. More information about the
training procedure for T and i-vector extraction can be found in [15,
16].

2.3. Anomalous Acoustic-Event Detection

For speech synthesis purpose, WaveNet is usually used as an autore-
gressive filter, i.e., it predicts the future sample x̂t from predicted
samples x̂t−R−1:t−1 and repeats the procedure to randomly gener-
ate a waveform signal [5]. On the otherhand, in the case of anomaly
detection, the observed waveform signals can be directly used for
prediction. Therefore, WaveNet is used here as an FIR filter in the
same manner as during training.

To detect anomalous acoustic-event, the proposed method esti-
mates an uncertainty of the prediction from the shape of posterior
distribution. The shape of posterior distribution of a known sound is
sharp while that of an unknown sound is flat. Hence, it is expected
that anomalous acoustic-event are identified based on the shape of
the prediction. To quantify the uncertainty of prediction, an entropy
e of the posterior distribution is calculated as follows:

et = −
C∑

c=1

ŷt,c log2 ŷt,c. (9)

The entropy is calculated over the posteriogram, resulting in the en-
tropy sequence e = {e1, e2, . . . , eT }. Finally, thresholding over
the sequence of entropies is performed using the following threshold
value:

θ = µ+ βσ, (10)

where θ represents the threshold value, µ and σ represent the mean
and the standard deviation of the entropy sequence, respectively, and
β is a hyper parameter. The value of parameter β is decided through
preliminary experiments.

To smooth the detection results, three kinds of post-processing
are applied.

1. Apply a median filter with a predetermined filter span;

2. Fill gaps which are shorter than a predetermined length;
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Table 1. The detail of auxiliary features
Auxiliary features 40-dim. log mel spectrum

for WaveNet 60-dim. i-vector
Frame size for log-mel spectrum 25ms

Frame-lebel feature for i-vector MFCCs, ∆, ∆∆

Order of MFCC 20
Segment length for i-vector 30 seconds,

UBM components 256
Order of I-vector 400

3. Remove events whose duration is shorter than a predeter-
mined length.

The parameters for post-processing are decided through preliminary
experiments.

3. EVALUATIONS BY COMPUTER SIMULATION

Experimental evaluation using two-weeks of audio data recoded
at a subway station was conducted. Data from the first week was
used as training data, and the rest of the data are used as evalua-
tion data. The continuous audio data was divided into 30 second
pieces and added anomalous sounds to each piece of evaluation data.
The added anomalous sounds included the sound of glass breaking,
screaming, and growling, and are selected from the Sound Ideas
Series 6000 General Sound Effects Library [17]. Each sound was
added at random temporal positions with three signal-to-noise ratios
(SNRs): 0 dB, 10 dB, and 20 dB. Evaluation was conducted in two
regimes, event-based metric (onset only) and segment-based evalua-
tion metric, where the F1-score was utilized as the evaluation criteria
(see [18] for more details). The detail of the auxiliary features is
shown in Table 1.

To compare the performance of our proposed method, we used
the following methods:

1. Auto-encoder (AE)

2. Auto-regressive LSTM (AR-LSTM)

3. Bidirectional LSTM auto-encoder (BLSTM-AE)
These networks consist of 3 hidden layers with 256 hidden
units, and their inputs are 40 dimensional log mel spectrum,
which are extracted with 25 ms window and a 10 ms shift.
All of these networks were optimized using Adam [19] under
the objective function based on the root mean squared error.

4. WaveNet without i-vector [4]
This method is equivalent to the the proposed method without
i-vector.

Thresholding and post-processing were the same as our proposed
method. All networks were trained using the open source toolkit
Keras [20] and TensorFlow [21] with a single GPU (Nvidia GTX
1080Ti).

The experimental results are shown in Figs 6 and 7. The re-
sults show that the proposed method outperforms the conventional
methods for both event-based and segment-based metrics. Thus, we
can confirm the effectiveness of the proposed method. The proposed
method achieved as much as 15 pt higher F-measure than LSTM
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Fig. 7. Segment-based experimental results.

and AE in the event-based results. The difference in F-measure by
methods with and without i-vector turned out to be 1.5 pt.

4. CONCLUSION

This paper has proposed a scene-dependent anomalous acoustic-
event detection based on WaveNet and i-vector. The WaveNet builds
normal acoustic event models by exhaustive learning of time-domain
signals in the public space to provide scene-independent anomaly
detection. I-vectors are used as additional features to describe acous-
tic scenes, where the input signals are observed, to complement the
WaveNet. The proposed method can detect anomalous acoustic-
events in environments whose acoustic scenes vary depending on
time, location, and surrounding environment. Evaluations with data
recorded from the real environment have demonstrated that the pro-
posed method achieved as much as 15 pt higher F-measure than
LSTM and AE. The difference in F-measure by the WaveNet with
and without i-vector turned out to be 1.5 pt.
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