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ABSTRACT
To develop a sound-monitoring system for checking machine health,
a method for detecting anomalous sounds is proposed. In real envi-
ronments such as factories, reverberation and background noise are
mixed in an observed signal, so detection performance is degraded.
It can be expected that detection performance will be improved by
using a front-end algorithm for acoustic signal processing such as
dereverberation and denoising. However, any algorithm has pros and
cons, so it is not possible to choose the best front-end algorithm only.
To solve this problem, the proposed method is based on a front-end
ensemble consisting of a blind-dereverberation algorithm and mul-
tiple anomalous-sound-extraction algorithms. Experimental results
indicate that the proposed method improves detection performance
significantly.

Index Terms— machine health monitoring, anomaly detection,
ensemble, dereverberation, anomalous sound extraction

1. INTRODUCTION

Sound-monitoring systems for checking a machine’s operational
condition (”machine health” hereafter) have become more impor-
tant. Typically, skilled maintenance technicians listen for sounds
from machinery and judge the overall condition of a machine from
those sounds; however, a shortage of skilled workers has become a
serious issue that necessitates an automated system for continuous
monitoring of machinery sounds. ”Acoustic-scene classification”
is a necessary technology for sound-monitoring systems. Espe-
cially, as a means of one-class classification for an unsupervised
scenario, ”anomalous sound detection” is the most applicable for the
sound-monitoring systems.

The purpose of this study is to propose a method for detecting
anomalous sounds in real environments such as factories. In such
environments, reverberation and background noise are mixed in an
observed sound signal, so the detection performance is degraded.
To solve that problem, the detection method must have robustness
against reverberation and background noise. To attain that robust-
ness, two types of architecture are available: a “modular architec-
ture” or an “end-to-end architecture”. The modular architecture,
which consists of front-end modules and back-end modules work-
ing independently, is suitable for anomalous sound detection. In
particular, the front-end modules perform acoustic-signal-processing
procedures such as ”denoising,” while the back-end modules per-
form classification. Although the end-to-end architecture, which is
a deep neural network with a high representation power, can be to-
tally optimized by using training data, it is unsuitable for the sound-
monitoring systems because a sufficient amount of training data can-
not be obtained. In addition, assuring the quality of the end-to-end

architecture is a more-difficult process than that for assuring the
quality of the modular architecture.

To solve the problem of reverberation and background noise,
the proposed architecture applies a front-end ensemble consisting
of a blind-dereverberation (BD) algorithm and anomalous-sound-
extraction (ASE) algorithms. It can be expected that a dereverber-
ation algorithm and a denoising algorithm can improve the detection
performance; however, any algorithm has pros and cons, so it is im-
possible to choose the ”best” front-end algorithm. Thus, as for the
proposed method, an ensemble of multiple front-end algorithms is
applied. In particular, the BD algorithm proposed by Togami et al.
[1], which is suitable for unknown anomalous sounds, is used be-
cause it does not rely on training. In addition, multiple ASE algo-
rithms based on non-negative matrix factorization (NMF) [2], non-
negative matrix underapproximation (NMU) [3], and non-negative
novelty extraction (NNE) [4] are used in parallel, and these algo-
rithms complement each other.

Experimental results indicate that the proposed method im-
proves the detection performance significantly. Also, it is indicated
that all of Togami’s BD algorithm, the ASE algorithms, and the
ensemble architecture improve the detection performance.

2. RELATION TO PRIOR WORK

The three main contributions of this paper are summarized as fol-
lows. The first contribution is clarification that an ensemble of mul-
tiple front-end procedures is suitable for anomalous sound detec-
tion. In the case of past DCASE challenges, some participants ap-
plied front-end ensemble approaches and achieved good results for
scene-classification tasks in supervised learning scenarios. For ex-
ample, Han et al. got 2nd place [5] in the DCASE 2017 Task 1 [6],
Sakashita et al. got 1st place [7] in the DCASE 2018 Task 1 [8], and
Tanabe et al. got 1st place tie [9] in the DCASE 2018 Task 5 [10]. In
contrast, as for anomalous sound detection in an unsupervised learn-
ing scenario, it is not clear that an ensemble of multiple front-end
procedures provides good performance, although anomalous sound
detection has been extensively studied [11][12][13][14][15][16][17].

The second contribution is demonstration that dereverberation
improves the performance of anomalous sound detection. Although
many researches have shown that dereverberation improves accuracy
of automatic speech recognition [18][19][20][21], anomalous sound
detection based on dereverberation has yet to be studied.

The third contribution is demonstration that ASE algorithms im-
prove the performance of anomalous sound detection. In [4], an ASE
algorithm (named NNE) was proposed, and the SNR was improved.
However, it was not confirmed that the ASE technique improves the
anomaly-detection performance.
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Fig. 1. Proposed architecture

3. PROPOSED METHOD

The architecture of the proposed method is shown in Fig. 1. The
system consists of front-end modules, back-end modules, and an
ensemble-based detector. The front-end modules consist of a module
for BD and modules for ASE.

3.1. Blind Dereverberation (BD)

BD algorithms [1][22] are suitable for the sound-monitoring sys-
tems, in which acoustic transfer functions (ATFs) often change,
because they do not rely on training. In this study, Togami’s BD
algorithm [1] is applied because of its usability. It combines multi-
channel inverse filtering, beamforming, and non-linear reverberation
suppression (NRS). It is robust against ATF fluctuations and creates
less distortion than NRS alone. The three components are optimally
combined from a probabilistic perspective by using a unified like-
lihood function incorporating a multichannel-probabilistic-source
model and a probabilistic-reverberant-transfer-function model.
Togami’s BD separates the dereverberated signal for each source
and the residual reverberation from the M -channel input signal.
The dereverberated signal for each source also contains M chan-
nels because Togami’s BD is a multi-input-multi-output (MIMO)
algorithm. By mixing the dereverberated signals of all sources, an
M -channel output signal is made and sent to the anomalous sound
extractors. Although a dereverberated signal for each source is out-
putted by Togami’s BD, a mixed dereverberated signal is inputted
to the next procedure because source separation is not focused on in
this study. In the case of DCASE 2018 Challenge Task 5, the authors
used not only the dereverberated signal but also the reverberation
signal [9], whereas in the case of the proposed method, the rever-
beration signal is not used because the effect of the dereverberated
signal is focused on in this study.

3.2. Anomalous Sound Extraction (ASE)

To solve the background-noise problem, the proposed method uses
multiple ASE algorithms. Most algorithms for anomaly detection
learn the acoustic model corresponding to the normal sound by us-
ing training data in advance. The anomaly-detection algorithms cal-

culate a criterion for determining how different the input signal is
from the normal sound [23], and it detect the anomalous sound based
on the criterion. In real environments, the input signal includes the
background noise belonging to the normal-sound category, so the
criterion fluctuates as the noise fluctuates to some extent, and detec-
tion performance decreases. Hence, ASE can be considered suitable
for anomaly detection in noisy environments.

ASE algorithms are briefly explained as follows. The procedure
of ASE consists of two phases, i.e., a training phase and an extrac-
tion phase. In the training phase, a normal-sound model consisting
of acoustic atoms is estimated from the amplitude spectrogram of the
input signal in training data X , which is an N × T matrix, where
N is the number of frequency bins, and T is the time index. The
training data contains only normal sound; namely, it does not con-
tain anomalous sound. The normal sound is generated from healthy
machines or background noise. It is assumed that X can be de-
composed into an N × K matrix called acoustic atoms (W ) and
a K × T matrix called activations (H), where K is the number of
acoustic atoms. W can be learned from X in an unsupervised-NMF
manner [2]. In the extraction phase, the spectrogram of anomalous
sound R is estimated from the input spectrogram in test data X and
learned atoms W .

As the ASE algorithms used in this study, NMF, NMU, and NNE
were chosen. Improvements in SDR yielded by different ASE algo-
rithms are shown in Figure 2. NMF, NMU, and NNE have different
correlations between the input SNR and the improved SDR. There-
fore, it is expected that these algorithms complement each other.

The NMF-based ASE is the simplest algorithm. It is assumed
that X is a linear combination of normal sound WH and anoma-
lous sound R given as follows:

X = WH +R s.t. W ,H ≥ 0, (1)

where H is unknown in the extraction phase. H is easily estimated
by supervised NMF based on multiplicative updates [2]. The NMF-
based ASE estimates R from the estimated H , Ĥ , as follows:

R̂ = X −WĤ, (2)

where R̂ is estimated R. However, the estimated anomalous sound
R̂ tends to be distorted and vanish under noisy conditions because
R̂ may have negative values.
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Fig. 2. Improvements in SDR yielded by different ASE algorithms.
Number of basis components is 20. The x- and y-axis show in-
put SNR [dB] and average SDR improvement [dB], respectively.
(Kawaguchi et al., IWAENC 2018 [4])

NMU [3] is similar to NMF, but R is always kept non-negative
because an underapproximation constraint is added. In each itera-
tion, the supervised version of NMU determines hT , which is one
row vector of H , by solving the following optimization problem:

min
h,R

1

2
∥R∥2F s.t. X = whT +R

w,h,R ≥ 0, (3)

where w is the column vector of W corresponding to hT . The
NMU-based ASE outputs the estimate of R after a certain number
of iterations. The anomalous sound is explicitly modeled as a non-
negative matrix, so it can be expected that NMU is superior to NMF.
However, in the case of NMU, the error accumulates in each iteration
because it is a greedy algorithm, so its extraction performance is not
so high.

NNE [4] is a simultaneous-optimization version of NMU revised
from NMU, so the demerit of NMU caused by the greedy iterations
is eliminated. NMU and NNE are similar in the regard that R is
always kept non-negative. NNE-based ASE also outputs estimated
R after iterations, where R is estimated by solving the following
optimization problem:

min
H ,R

1

2
∥R∥2F s.t. X = WH +R

W ,H,R ≥ 0. (4)

By applying the alternating direction method of multipliers (ADMM),
(4) is converted to the following update rules:

Hk = S
(
W T

k M/
(
W T

k W k

))
, (5)

Rk = S
(

1

1 + γ
(γ (X −W kHk) + Γk−1)

)
, (6)

Γk = Γk−1 + ξγ (X −W kHk −Rk) , (7)

where k is the index of iterations, γ and ξ are positive constant val-
ues, M = X−Rk−1 +γΓk−1, and S(·)ij = max {(·)ij , 0}. The
procedure of NNE is shown in Algorithm 1.

3.3. Back-End Modules and Ensemble-Based Detection

In the feature-extraction modules, the log mel energies are calcu-
lated from the input signal by 40 mel filters, and a 200-dimensional
feature vector is made every five frames. The feature vector is in-
put to a deep autoencoder consisting of three hidden fully connected

Algorithm 1 NNE (supervised version)
1: Input: X and W
2: Initialize W k−1 = W k−1

3: Initialize Hk−1 by supervised NMF for X and W
4: Initialize Rk−1 = S (X −W k−1Hk−1)
5: Initialize Γk−1 by random values
6: repeat
7: Update Hk using (5)
8: Update Rk using (6)
9: Update Γk using (7)

10: k = k + 1
11: until Convergence
12: Output: Hk and Rk

layers (200-40-40-40-200 units). Rectified linear units (ReLUs) [24]
are applied for all hidden layers. The autoencoder corresponding to
each front-end module executes a training procedure individually.
For training, Adam [25] and batch normalization [26] were applied.
For every five frames (τ ), namely, every autoencoder (i), and ev-
ery microphone channel (m), the reconstruction error of the autoen-
coder, eτ,i,m, is calculated. We expect that even if the autoencoders
are replaced with Gaussian-mixture models [11][12], variational au-
toencoders [15][17], or other anomaly-detection algorithms, the pro-
posed method (namely, an ensemble consisting of a BD algorithm
and ASE algorithms) will improve the detection performance in a
similar manner to the autoencoders. However, this expectation is
beyond the scope of this paper.

The proposed method evaluates the average ensemble of the re-
construction errors averaged over the whole segment (10 s), all the
autoencoders, and all the channels. Although averaging is the sim-
plest way, it is very robust to overfitting. Averaged reconstruction
error E is given as

E =
∑
τ

∑
i

∑
m

eτ,i,m − µi

σi
, (8)

where µi and σi are average and standard deviation of eτ,i,m over τ
and m calculated from the training data, respectively. The anoma-
lous sound is detected by thresholding E for each 10-s segment.

4. EXPERIMENTAL RESULTS

We experimentally evaluated the improvement in anomaly detection
by applying the proposed method. A circular microphone array con-
sisting of eight microphones (Fig. 4) was arranged around real au-
tomated machines consisting of a lot of parts (such as mechanical
arms). When the machines repeatedly performed a series of work,
the sound of the machines was recorded as 16-bit audio signals sam-
pled at 16 kHz (Fig. 5). The reverberation time was about 400 ms.
Recorded data with length of 10 s per segment × 15 segments × 18
machines (= 2700 s) was used as training data, and other data with
length of 10 s per segment × 15 segments × 18 machines (= 2700
s) was used as “normal” test data. The same amount of “abnor-
mal” test data was recorded by playing the anomalous sound from a
loudspeaker located 1 m from the microphone array in the same en-
vironment. The anomalous sound was periodically swept from 0.3
to 7 kHz in a cycle time of 3 s. In the “abnormal” test data, the input
SNR was set to -5, -10, and -15 dB by changing the amplitude of the
sweep sound. A Hanning window with frame size of 512 and frame
shift of 256 was applied, a Euclidean-norm NMF [2] was used for
the NMF-based ASE, and number of basis components (K) for ASE
was set to 20.
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Fig. 4. Circular microphone array
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Fig. 5. Spectrogram of a part of the recorded sound. X-axis shows
the time in seconds.

“Area under the curve” (AUC) for each autoencoder and each
ensemble is listed in Table 1. In the table, each label from (A) to
(H) corresponds to autoencoders in Fig. 3. Comparing “w/o BD”
with “w/ BD” in Table 1 reveals that BD improves the performance
of anomalous sound detection. Moreover, comparing “w/o ASE”
with the other ASEs in Table 1 reveals that the ASE algorithms also
improve the performance of anomalous sound detection. In addition,
when input SNR is -10 dB or -15 dB, the AUCs of the proposed
ensemble are higher than those of the best combination of BD and
ASE, whereas those of the ensembles (A)-(H), (E)-(H), and (B)-(D)
are relatively low. Also, when input SNR is -5 dB, the AUC of the
proposed ensemble is about 1, namely, at the same level as those
of the best combination of BD and ASE. These results indicate that
the front-end algorithms in the proposed ensemble complement each
other in noisy cases. It can be considered that the reason that the

Table 1. Results of anomalous sound detection (AUC)
label in Input SNR

BD ASE Fig. 3 -5 dB -10 dB -15 dB
w/o BD w/o ASE (A) 0.848 0.722 0.654

NMF (B) 0.990 0.931 0.697
NMU (C) 0.939 0.795 0.675
NNE (D) 0.991 0.924 0.760

w/ BD w/o ASE (E) 0.886 0.752 0.664
NMF (F) 1.000 0.954 0.785
NMU (G) 0.965 0.857 0.732
NNE (H) 1.000 0.945 0.813

ensemble of
all of (A)-(H) 0.970 0.853 0.703
only BD ((E)-(H)) 0.977 0.889 0.744
only ASE ((B)-(D)) 0.983 0.880 0.702
proposed ((B)-(D) & (F)-(H)) 0.999 0.974 0.854

AUCs of ensemble (A)-(H) are lower than those of the proposed
ensemble is that those of (A) and those of (E) are too low.

5. CONCLUSION

A method for detecting anomalous sound was proposed. To solve
the problem of reverberation and background noise, the proposed
method is based on a front-end ensemble consisting of a BD algo-
rithm and ASE algorithms. The multiple front-end algorithms in the
proposed ensemble complement each other. Experimental results
indicate that the proposed method improves detection performance
significantly. In particular, the BD algorithm, ASE algorithms, and
ensemble architecture all individually contribute to improving detec-
tion performance.
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