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ABSTRACT
Automatic Chord Recognition (ACR) seeks to extract chords
from musical signals. Recently, deep neural network (DNN)
approaches have become popular for this task, being em-
ployed for feature extraction and sequence modelling. Tra-
ditionally, the most important steps in ACR were extraction
of chroma features which estimate the energy in each pitch
class, and pattern matching using templates or learning-based
approaches. In this paper we reconsider chroma features with
template matching, employing spectral reassignment chroma
with synthetic spectral templates, and find experimental re-
sults comparable to those of a recent DNN-based chroma
extractor.

Index Terms— chord recognition, spectral reassignment,
chroma, CRP feature

1. INTRODUCTION

Chords are a fundamental construct in much western music
and their automatic recognition is a popular task in music
processing. Traditionally, ACR was performed by first calcu-
lating chroma features [1], in which each dimension relates
an estimate of activity in a given pitch class. A chromagram
is a matrix with a chroma feature associated to a time instant
in each column. Chord labelling is then performed by com-
paring the chroma features to models for different chords.
Chord models may be templates, or machine learning based.
Chroma features are noisy due to the presence of transients
and other non-chord related signal elements. Hence, ACR
systems invariably incorporate temporal continuity [2] [3]
Other music features, including key [4], bass [5], beats [3]
[6], have been explored to counter the noise in chroma. Even
so, the importance of features in ACR was asserted by Cho
and Bello [7] who compared different chroma and found
ordered performance to be almost invariant to various post-
processing steps. Currently, deep neural networks (DNN)
are popular in ACR, for feature extraction [8] [9] and tempo-
ral consideration [10] [9], although the delineation of ACR
subtasks may be blurred in DNNs [11].
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A variety of chroma features have been proposed for ACR
and other tasks. Typically a pitch feature is first derived from
which a basic chroma feature is calculated by summing el-
ements of the same pitch class. The pitch feature is usu-
ally based on a Constant Q-transform (CQT), a spectrogram
with a log-frequency scale with an equal number of frequency
bins per octave. Alternative features to this basic chroma
are easily derived through transformation of the pitch feature.
Well-known transforms for chroma include log-compression
which de-emphasises large energy peaks and spectral weight-
ing which places more weight on the central elements of the
pitch scale, thereby de-emphasising the effect of higher over-
tones. A chroma feature combining these two transforms ap-
plied to a CQT-based pitch feature was seen to be optimal in
[7]. Later, we found the Chroma Reduced Pitch (CRP) feature
[12] which high-pass filters the log-compressed pitch feature,
to improve on the log chroma feature [13]. While chroma fea-
tures have been often compared [7] [14], the effect of different
pitch features has not been explored so thoroughly. One al-
ternative spectral representation to CQT is spectral reassign-
ment, employed in [15].

Different chord modelling techiques have been explored
for ACR. The original [1], and simplest approach is to use bi-
nary chord templates, in which expected active pitch classes
are set to one. Data-driven chord models later became widely
used, particularly multivariate Gaussian and Gaussian mix-
ture models (GMM), [5] [16] [7]. Other learning-based ap-
proaches include SVMs [17] [18]. A synthetic template was
employed for chord modelling in [19] [6]. In this case a chord
template was formed by summing model note spectra [20]
synthesised according to a number of overtones with a fixed
roll-off. Such synthetic templates were only applied to basic
chroma and were found to have little effect [19] relative to the
binary template and have been rarely employed since.

In this paper we reconsider synthetic template-based ACR
for log and CRP features. We derive a CQT through reassign-
ment and compare to a standard CQT for various chroma. In
the next section we detail the approach taken, including re-
assignment, chroma, and synthetic chord models. We then
provide experimental results for chroma features using both
CQTs, and report results similar to the deep chroma extractor
[8]. Finally we conclude, with pointers to future work.
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2. PROPOSED APPROACH

2.1. Reassigned CQT and pitchgram

Spectral reassignment, which assigns the energy in a point
on the spectrogram S(ω, τ) calculated with a window, w, to
a point S(ω̂, τ̂) is first performed, similar to [15] using the
reassignment operators of [21], in which

ω̂ = ω +
∂φ(ω, τ)

dτ
= ω + =

(
SD(ω, τ)× S∗(ω, τ)

|S(ω, τ)|2

)
(1)

is proposed for frequency assignment, where φ(ω, τ) is the
phase at the spectrogram point S(ω, τ), SD is a spectrogram
calculated using a window, wD = dw(t)

dt , and S∗ is the com-
plex conjugate of the spectrogram. Likewise,

τ̂ = τ − ∂φ(ω, τ)

dω
= τ −<

(
ST (ω, τ)× S∗(ω, τ)

|S(ω, τ)|2

)
(2)

performs temporal reassignment, where ST is a spectrogram
calculated using a window, wT = tw(t), The mixed second
derivative [22] is also calculated

∂2φ(ω, τ)

∂τ∂ω
= −∂τ̂(ω, τ)

∂τ
=
∂ω̂(ω, τ)

∂ω
− 1 =

<
(
STD(ω, τ)S∗(ω, τ)

|S(ω, τ)|2

)
−<

(
ST (ω, τ)SD(ω, τ)

S2(ω, τ)

)
(3)

where STD is a spectrogram calculated using a window
wDT = w(t) × ∂w(t)

∂t . This is used to filter out transient
elements by thresholding [15]

Λ =

{
(ω, τ)|

∣∣∣∣∂2φ(ω, τ)

∂τ∂ω
+ 1

∣∣∣∣ < 0.4

}
(4)

as it is shown that ∂
2φ(ω,τ)
∂τ∂ω = −1 for sinusoids and ∂2φ(ω,τ)

∂τ∂ω =
0 for clicks [22].

After calculating the reassignment operators (1) (2) (3),
we can derive a reassigned CQT (RA-CQT). This is designed
in order to be as similar to the CQT employed in [7], and
a time-frequency grid with 36 bins per octave, or 3 bins per
semitone, and with 92ms temporal resolution is created. The
frequency points on the grid are generated according to an
estimated tuning, using a pitch error histogram-based method
[20] using the reassigned frequencies of high energy points
in the spectrogram. The same tuning estimations can also be
used for the standard CQT filterbank. For each point in the
set Λ, the energy is assigned into the grid according to the
reassigned frequency and time. A pitch representation P ∈
R120×N is then calculated with each row representing a pitch.
Rows 21 to 108 are populated by the pitches corresponding
to their MIDI number, covering the scale of a piano, while
other rows are zero, as used for CRP [12]. As the RA-CQT
contains 36 bins per octave, a gaussian weighting is applied,
across the three RA-CQT bins representing one point in P in
order to downweight the sidelobes, similar to the CQT used
in [7]. A large temporal overlap in the spectrogram produces
a smoother RA-CQT in the presence of noise and tranisents.

2.2. Chroma features

Once the basic pitchgram is computed, the transforms can be
applied such as log compression

pLm,n = log(1 + αpm,n) (5)

where α = 1000/max(pn) and pm,n is the element in the
mth row in pn, the nth column of P . Spectral weighting
such as in [7] uses a Gaussian centred on m = 60

pWm,n = pm,n × e−
(m−60)2

450 (6)

A reduced pitch feature, such as CRP is formed

pRn = H(pn) (7)

where H is a high-pass filter, effected through removing a
set of low-frequency coefficients from a DCT of dimension
120 [12]. Different sets can be used, typically removed from
each other by 20 dimensions e.g. the CRP(15), CRP(35) and
CRP(55) remove the lowest 15, 35, and 55 coefficients, re-
spectively. A jump effect is seen at this distance of 20 which
is also the distance between cosine elements that repeat on a
per-octave basis in the specified DCT e.g. DCT(41) repeats
twice per octave, while DCT (81) repeats 4 times per octave.
While CRP(55) is considered favourable for audio similarity
in [12], we found [13] that CRP(35) was superior for ACR.

The various transforms (5) (6) (7) can be performed in
combination with each other in one feature. Here, the log
compression is performed first (5) followed by the filtering (7)
with the spectral weighting (6) always performed last. Finally
the chroma is estimated by addition of the coefficients of the
different pitch classes across all octaves

ck,n =

O+1∑
o=2

p12×o−4+k,n (8)

where O = 7 is number of octaves considered here.

2.3. Templates

Binary templates are formed by creating a chroma feature
with pitch classes expected active in a given chord set to one
and all other dimensions set to zero. For example an A major
chord template is specified as

t = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]T

which can be cycled to give all other major templates. Minor
chord templates are formed similarly. A template dictionary
T ∈ R12×l, where l is the number of chords considered is
formed by placing a labelled chord template in each column.

A dictionary of synthetic templates is defined by two pa-
rameters; the number of harmonics, h, and a roll-off param-
eter, r. The amplitude of the vth harmonic in a note is then
defined as

av = rv−1.
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While previous approaches [19] [6] simply add ideal expected
spectrums created from the notes of a chord, we synthesise a
chord waveform using a harmonic sinusoid model

y(t) =

J∑
j=1

H∑
h=1

a(h) sin(2πhf j0 t) (9)

where f j0 is the fundamental frequency of the jth note in a
chord and J is the number of notes in the chord. Given a
synthetic signal as above, a chord template for a feature type
is created by the same process in which the chroma itself is
formed, calculating a (RA)-CQT and subsequent pitchgram
and applying corresponding transforms. It is hoped, in this
manner, to create a more realistic chord model. In particu-
lar, when compression is applied to the pitch feature, rela-
tively large coefficients may be placed on e.g. sidelobe en-
ergy, which might be zero in an idealised spectral synthesis
approach. Similar to the binary templates, a dictionary may
be formed by cycling templates of a given class.

2.4. Chord estimation

As previously noted, chroma is a noisy feature in the presence
of real audio signals, and the temporal continuity of the signal
needs to be considered. Here, chord estimation is performed
using a HMM-based classifier. The cosine distance, bl,n =
tTl cn is used as a measure of fit for the lth chord at the nth
time frame. Quasi-probabilities are then calculated from this
measure of fit by

Ql,n = Q(l̂n = l) = e−
1

2σ2
(1−bl,n)2 (10)

where l̂n is the selected chord at the nth frame and σ is a user
selected value. These quasi-probabilites are then input to the
Viterbi algorithm. A simple transition matrix,A ∈ Rl×l in
which all diagonal coefficients, relating self-transitions, are
homogenous and all off-diagonals relating transition to an-
other chord are also homogenous is employed here.

[A]i,j =

{
α/(1 +Nα) if i 6= j

(1 + α)/(1 +Nα) if i = j
(11)

where α is a HMM parameter that may be varied. This simple
approach has been shown in several cases [7] [23] to result
in similar results to a transition matrix that is derived from
the probabilities of chord transitions which is attributed to the
high probability of self-transitions. Employing this transition
matrix can also been seen as using a change penalty term in
the Viterbi cost function

2.5. Relationship to other work

Several of the steps were previously proposed for ACR, with
some modifications applied here along with their use in dif-
ferent contexts. Reassignment-based chroma estimation was

proposed in [15] which we modify here to directly compare to
the CQT feature, and augment with the transforms of weight-
ing, compression and filtering. We also consider the reas-
signed chroma with template models rather than the GMMs
used in [15]. The synthetic template employed in [19] [6], is
modified here by being generated from waveforms rather than
spectral addition, in order to be used in the new context of en-
hanced chroma features. Finally, the chroma features were
originally proposed in [24] [12], while we found that non-
standard variants of CRP were preferable for template-based
ACR in [13].

3. EXPERIMENTS

A dataset comprising the Beatles [25], Queen and Zweick
[3] subsets of the Isophonics dataset; the RWC-POP [26] and
US-POP [27] datasets which were annotated by Cho, and the
Robbie Williams dataset [28], was employed. This dataset of
578 songs contains all data employed in [7] and [8]. Chord
templates for major and minor chords were synthesised. All
chords in the ground truth annotations were mapped to one of
these classes, with minor and diminished chords mapped to
minor and all other chords mapped to major, as is common
practice for major-minor classification task. A silence detec-
tor was employed, similar to [7] with detected frames labelled
as no-chords, a class that is also found in the ground truths.

Several chroma variants were calculated, including the
basic chroma, CA, log compressed feature, CL, and CRPs
with filter parameters of 15, 35 and 55, denoted in brack-
ets. Weighted versions of these chroma features were also de-
rived, denoted by CAW , CLW and WCRP for the basic, log, and
CRP chroma features. Each feature was created using both
the CQT and the RA-CQT. We consider the CLW with CQT as
the baseline, as this was best in template-based ACR in [7].
The CQT was derived from code in [29], using windows of
186ms with 93ms overlap. The RA-CQT was implemented
as described above, and was derived from initial spectrograms
with a window size of 186ms and an overlap of 163ms. Bi-
nary templates and the synthetic templates were compared.
For the synthetic templates the number of harmonics was set
to the different values h ∈ {4, 10, 20} and the roll-off param-
eter was varied from r ∈ [0.4 0.8] in steps of 0.1. Analysis
was performed the HMM-based classifier, which was run for
a variety of values of α, the transition matrix parameter. Re-
sults given are for the optimal setting of α, h and r for each
respective feature over all tracks in the dataset.

Each frame is labelled with a chord after classification,
and the chord labels are compared to the ground truth. All
frames are then labelled as true positive, T or false positive
F , allowing the recall metric to be calculated

R =
#T

#T + #F
× 100%

862



CQT RA-CQT
Bin. Syn. Bin. Syn.

CA 66.8 68.8 71.6 72.6
CL 65.9 69.5 73.4 75.0

CRP(15) 67.3 71.9 75.0 76.6
CRP(35) 66.8 72.3 74.6 76.7
CRP(55) 65.2 70.8 73.8 75.2

CAW 70.8 71.2 74.1 74.5
CLW 73.5 74.4 76.5 77.4

WCRP(15) 73.7 74.8 76.5 77.5
WCRP(35) 73.6 75.9 76.5 77.5
WCRP(55) 72.3 74.1 75.3 76.2

Table 1. Results for ACR experiments on the full dataset,
comparing CQT with RA-CQT, binary and synthetic tem-
plates, and various chroma features using HMM-based clas-
sification.

3.1. Results

Results for the experiments are shown in Table 1. Here it
is seen that the synthetic templates improve on the binary
templates in all cases. In some cases, such as CRP(35) with
the CQT, this results in improvements of over 5%. These
differences are less when spectral weighting has been ap-
plied, which is to be expected as both the weighting and the
synthetic chord model seek to reduce the effects of higher
overtones. Likewise it is seen that the RA-CQT always re-
sults in improvements over the CQT for a given feature. This
improvement relative to the CQT type is regardless of chord
model i.e. binary templates with the RA-CQT improve on
synthetic templates with the CQT. With binary templates,
even the basic chroma, CA with RA-CQT, performs better
than all chroma with CQT, with respect to whether spectral
weighting was employed. Spectral weighting itself is seen to
improve ACR in all cases, as previously reported in [7] [13].
It is noticable however that this effect is muted when the
RA-CQT is employed. In particular, applying weighting to
CRP(15) and CRP(35) with synthetic templates and RA-CQT
results in a difference of less than 1%.

Some improvements using the CRP relative to the log
feature are observed when spectral weighting is not ap-
plied. However, unlike previously [13], we observe that
the (W)CRP(15) performs better than (W)CRP(35) when
the binary templates are employed, although the differences
are small. We assume this is an effect of the more varied
dataset used here, where we observe a more balanced se-
lection of chords in terms of major-minor classes than in
the dataset employed in [13]. However, with synthetic tem-
plates CRP(35) performs at least as well as CRP(15). With
weighting applied, little difference is seen between CLW and
WCRP(15) and WCRP(35), particularly with RA-CQT. 1

1Code available at github.com/kooh7/RACHR

Btls. Iso RWC RW [8]
CLW 77.0 70.6 69.5 76.8 73.9
CLW 79.8 78.6 77.4 79.4 78.3

WCRP(15) 79.9 78.6 77.3 79.6 78.3
WCRP(35) 80.2 78.7 76.9 79.6 78.3
DNN [8] 80.2 79.3 77.3 80.1 78.8

Table 2. Comparision of ACR performance Beatles (Btls.),
Isophonics (Iso) RWC, and Robbie Williams (RW) and ag-
gregate dataset from [8]. Top feature is the baseline approach
from [7]. Centre three features use RA-CQT with synthetic
templates. Bottom feature is DNN-based approach in [8].

Further results are given in Table 2, comparing the base-
line, the best approaches from Table 1 and the deep chroma
extractor [8] on the datasets from that paper [8]. A similar
improvement over the baseline as in Table 1 is seen, while
performance is close to that of the DNN chroma feature. The
different approach used by the DNN to incorporate temporal
context is noted. While a HMM is employed with the tem-
plates, the DNN is a convolutive network which uses several
time frames to classify one frame. We note also the simi-
lar performance of our baseline and the baseline in [8], which
uses logistic regression on multiple frames of the CLW feature.

To summarise, we observe several ways in which template-
based ACR is improved, using reassignment, synthetic tem-
plates, spectral weighting, and using CRP(15) / CRP(35).
However, a combination of these effects leads to sub-additivity
in terms of improvements e.g. the log feature performs just
as well as CRPs when weighting and RA-CQT are employed.
The closeness in performance to the DNN chroma extractor
may possibly suggest a saturation in terms of ACR perfor-
mance for the minor-major ACR task in relation to feature
extraction and simple temporal consideration.

4. CONCLUSIONS

We reconsidered template-based ACR, with reassigned spec-
trograms, synthetic templates and various chroma features.
We found this combination effective, improving on the base-
line feature by ∼ 4%, and performing similarly to a DNN-
based chroma feature, whilst not requiring the expensive
training of DNNs. This suggests much of the improvement in
DNN-ACR is due to chord sequence modelling with recurrent
neural networks (RNN) rather than the feature extraction. A
simple HMM was employed here, guided by one parameter
over all signals. Tuning the parameter song-wise results in
∼ 3% improvement, while still not being optimal locally.
Such local adaptivity is the strength of RNNs for ACR [30],
and their use with the proposed features should be considered.
We will also consider adaptive HMM models parameterisable
from temporal features of a signal, which shall be compared
to RNNs, as this may be more computationally attractive.
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