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ABSTRACT

A novel improvement to an existing wavelet representation is presented
within the context of analysis and synthesis of harmonic audio sig-
nals. The approach replaces the discrete wavelet transform stage in the
harmonic-band wavelet transform with the dual-tree complex wavelet
transform. The harmonic-band wavelet transform lacks explicit phase
information, is subject to considerable transform domain coefficient
aliasing and its filters exhibit poor frequency selectivity and high sidelobe
levels. Integration of the dual-tree complex wavelet transform mitigates
all of these disadvantages and significantly improves the accuracy of
signal synthesis where signals are synthesised through autoregressive
analysis and linear prediction of transform domain coefficients.

Index Terms— Wavelet, Audio, Synthesis

1. INTRODUCTION

A particular approach to characterising acoustically-generated harmonic
sounds has been adopted through the signal-adaptive spectral repre-
sentation of the harmonic-band wavelet transform (HBWT) [1]. This
transform, which employs a hybridisation of the discrete wavelet trans-
form (DWT) with the modified discrete cosine transform (MDCT),
provides a compelling model for analysis and synthesis of such signals
and the new transform presented here is based on its implementation.
Power spectra that the basic HBWT [2] is particularly suited to analyse
are comprised of approximately harmonically-related peaks with the
power spectrum neighbouring each harmonic decaying as an inverse
power of the distance in frequency away from it. The motivation behind
the transform’s definition was to formulate a new means of spectral
segmentation for representing the harmonic and stochastic components
of these signals. Accordingly, the outcome is such that each harmonic
may be individually analysed and that spectral intervals surrounding each
harmonic (the stochastic component) are divided into sub-bands, each
of which may also be individually analysed.

Fractal additive synthesis (FAS) – a method based on the HBWT –
has been described to improve upon widely adopted STFT-based models
[2], in particular, spectral modelling synthesis (SMS). In SMS [3] the
harmonic component is synthesised based on sinusoidal analysis of
the original signal and then subtracted from it to produce a residue.
The stochastic component is generated through approximating this
residue’s entire spectral envelope. In contrast, synthesis of the stochastic
component by FAS is dependent upon an explicit, spectrally-segmented,
HBWT model of the stochastic component in the original signal. A
more detailed and explicit analysis was seen to overcome limitations
posed by SMS in the effective synthesis of the stochastic component
– essential to emulating the specific and vibrant natural complexity of
acoustically-generated harmonic sounds.
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1.1. The Modified Discrete Cosine Transform and Cosine-Modulated
Filter Banks

The MDCT [4][5] is a lapped transform based on the type-IV discrete
cosine transform (DCT-IV). An MDCT is in fact exactly equivalent to
a DCT-IV of size N, where the 2N inputs have been preprocessed with
N additions and subtractions. This transform can effectively reduce block
boundary artefacts and due to time-domain aliasing cancellation, perfect
reconstruction can be achieved [6][7]. By applying an MDCT to a dis-
crete time signal s(l), an expansion in terms of a set of sequences is
obtained by shifting a cosine-modulated, low-pass prototype filterw(l)
[1]. To compute the expansion, a P -channel cosine-modulated filter bank
(CMFB) with re-sampling factor P can be employed. The synthesis filter
impulse response is obtained by time reversal of the analysis filter impulse
response [1]. P here is set to the length in samples of the average funda-
mental period of a roughly or pseudo-periodic input signal, so it follows
that the disclosed method is defined only for pitch-stable sounds. Each
filter bank channel except for the first and last is tuned to a single sideband
of a harmonic of the input signal. P -order decimation of the CMFB with-
out aliasing caused by the decimation is made possible as the bandwidth
of each of its outputs is 1/(2P). Integer factor P is calculated by

P=

⌊
fs
f0

+0.5

⌋
(1)

where fs is the sampling frequency of the pseudo-periodic input signal
and f0 is its fundamental frequency. The MDCT basis functions [1] can
be written

qp,r(l)=qp,0(l−rP) p=0,...,P−1; r∈Z (2)

with
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where the low-pass prototype filter

w(l)=
1√
2P

sin
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1

2

)
π

2P

]
(4)

satisfies the symmetry conditions in [8].

1.2. The Dual-Tree Complex Wavelet Transform

The dual-tree complex wavelet transform (DT-CWT) has been shown to
overcome drawbacks inherent in the discrete wavelet transform (DWT)
[9] and has been successfully employed for both image and audio texture
synthesis [10] [11]. Advantages that the DT-CWT offers over the DWT
include:

• near shift invariance,

• the availability of explicit phase information [12],

• substantially reduced aliasing in the transform domain,
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• an enhanced emphasis of positive frequencies and rejection of
negative frequencies (or vice-versa).

Any finite energy signal s(l) may be expanded on a DT-CWT set

s(l)=

N∑
n=1

∞∑
m=−∞

dcn(m)ψc
n,m(l)

+

∞∑
m=−∞

ccN(m)ϕc
N,m(l) (5)

where indexn represents scale and indexm represents the time-shift. The
signal s(l) is projected over a basis comprised of scaled and time-shifted
versions of a complex fundamental wavelet ψc = ψr + jψi and a
time-shifted version of a corresponding complex scaling function ϕc=
ϕr+jϕi. dcn(m)=drn(m)+jdin(m) and ccN(m)=crN(m)+jciN(m)
are the DT-CWT complex wavelet coefficients and corresponding com-
plex scaling coefficients respectively. An efficient implementation of
the DT-CWT is a filter bank structure composed of two real DWTs
with iterated Hilbert pairs of filters producing the real and imaginary
components of the transform [9].

2. IMPLEMENTATION

2.1. Cosine-Modulated Filter Banks

Fig. 1. The frequency response of CMFB channels p=1 to p=6 with
P=200, and the magnitude Fourier transform of an input signal showing
its first 3 harmonic peaks, k=1 to k=3.

All signals within the class of pseudo-periodic signals for which this
method is defined exhibit spectra comprised of harmonic peaks

k=1,2...,bP/2c−1

approximately separated by intervals of the fundamental frequency f0.
As mentioned previously, the bandwidth of a P -channel CMFB filter is
∆f=1/(2P). This results in the two sidebands of each of the k harmon-
ics being passed by a pair of filters i.e. a sideband per filter. The index of
the filter corresponding to the lower sideband is p=2k−1 and the index
corresponding to the upper sideband is p=2k [2]. Our implementation
uses a fast modulated lapped transform provided by the LT-toolbox [13]
for MATLAB R© where the length L of filters is constrained to L=2P .
Figure 1 shows a plot of 6 forward transform CMFB filter responses
overlaid on the spectrum of an input signal (String Section in Table 1)
with fs=44.1 kHz, f0=220 Hz and therefore P=200 as per (1).
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Fig. 2. AN=2-level harmonic-band dual-tree complex wavelet trans-
form filter bank, cascaded as a P -channel cosine-modulated filter bank
with P dual-tree complex wavelet transform filter banks.

2.2. The Harmonic-Band Dual-Tree Complex Wavelet Transform

The crux of this synthesis by analysis technique is the formulation of a
transform method which can ‘intelligently’ decompose the spectrum of
the class of signals being processed, allow for effective manipulation of
its transform domain coefficients and perfectly reconstruct its input. The
harmonic-band dual-tree complex wavelet transform (HBDT-CWT) is
introduced as an improvement to the HBWT, integrating the advantages
of the DT-CWT into the existing HBWT framework.

The HBDT-CWT is implemented as the cascade of a P -channel
cosine-modulated filter bank (CMFB) with P DT-CWT filter banks
depicted in Figure 2. The inverse HBDT-CWT reverses the process
of the forward HBDT-CWT through appropriate upsampling and in-
verse filtering by the transform stages discussed previously, perfectly
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reconstructing input signals. The discrete-time harmonic-band dual-tree
complex wavelet function is defined by

ξcn,m,p(l)=
∑
r

ψc
n,m(r)qp,r(l) (6)

n=1,2,...,N;m∈Z p=0,1,...,P−1

where n is wavelet scale, m is time-shift, ψc
n,m(r) is the discrete time

complex wavelet function and qp,r(l) is the MDCT basis of (2). The
discrete time harmonic-band complex scaling function is defined by

ζcN,m,p(l)=
∑
r

ϕc
N,m(r)qp,r(l) (7)

m∈Z; p=0,1,...,P−1

where ϕc
N,m(r) is the discrete time complex scaling function. Based

on the orthogonality and completeness conditions for the HBWT given
in [1] it can be shown that any signal s(l)∈ l2 can be expanded on a
HBDT-CWT set

s(l)=

P−1∑
p=0

(
N∑

n=1

∑
m

bcp,n(m)ξcn,m,p(l)

+
∑
m

acp,N(m)ζcN,m,p(l)

)
(8)

where bcp,n(m) are the HBDT-CWT complex wavelet coefficients and
acp,N(m) are the HBDT-CWT complex scaling coefficients.

It is to be noted that for odd HBDT-CWT channels (p=1,3,...,P−1)
the complex conjugate of the DT-CWT filter impulse responses is con-
volved with the CMFB filter impulse response for that channel. For even
HBDT-CWT channels (p= 0,2,...,P−2), the original DT-CWT filter
impulse responses are convolved with the CMFB filter impulse response
for that channel. The motivation for this operation is to, for adjacent
channels, generate a symmetrical filter frequency response (Figure 3 (b))
around the spectral location of harmonic peaks in the input signal, as
with the HBWT. In our implementation, transform coefficients produced
by odd HBDT-CWT channels are subject to complex conjugation rather
than the DT-CWT filters themselves.

Figure 3 depicts sets of filter bands shaped to decompose two
sidebands and a harmonic of a signal with a fundamental frequency in
the middle of the spectrum. An important advantage of the HBDT-CWT
over the HBWT is illustrated in these plots. Namely, the emphasis of a
single side of the frequency spectrum and the rejection of the opposite
side – a feature of the DT-CWT described in [14]. Combined with
relatively high sidelobe levels on the required side of each individual
harmonic location, a substantial wavelet filter sidelobe intrusion into
spectral territory on the opposing side of individual harmonic locations
is obvious in (a) of Figure 3. Additionally, the scaling filter responses
seen in this plot show virtually no spectral discrimination.

In contrast, the HBDT-CWT filter responses in (b) of Figure 3 exhibit
low overall sidelobe levels, limited sidelobe intrusion into territory on
the opposing side of the harmonic location and significant improvement
in scaling filter spectral discrimination. The synergy of these charac-
teristics accounts for an improvement in the precision of the targeted
decomposition of harmonics and their sidebands offered by the HBWT.

2.3. Transform Coefficient Analysis and Synthesis

Once HBDT-CWT coefficients are obtained from an input signal, new
coefficients can be generated based on their analysis and subsequently fed
into an inverse HBDT-CWT to produce a synthetic signal. To achieve this,

(a) HBWT filters.

(b) HBDT-CWT filters.

Fig. 3. Frequency response of (a) HBWT filters and (b) HBDT-CWT
filters, for P =4 andN=3, plotted for channels p=1 and p=2. The
sub-band decomposition is of a single harmonic (depicted by the dashed
black line) and shows the lower and upper sideband filters. Filters are
labeled only for channel p=1.

the known bcp,n and acp,N coefficients are first analysed by autoregres-
sive (AR) spectral estimation. Using the estimated AR parameters, new
coefficients b̂cp,n and âcp,N are generated by driving AR finite difference
equations with white Gaussian noise. As the amplitude histograms of the
scaling coefficients representing the harmonic component of our input
signals were observed to be normally distributed, it was assumed that they
could be synthesised autoregressively as well as the wavelet coefficients.

A linear difference equation describing the most general autoregres-
sive moving average (ARMA) model of a time series [15] is defined as

x(m)=−
v∑

i=1

α(i)x(m−i)+

w∑
i=0

β(i)u(m−i), (9)

relating an input driving sequence u(m) to a wide-sense stationary (WSS)
discrete random output process x(m). α(i) are the AR parameters and
β(i) are the moving average (MA) parameters. (9) also represents a
linear time-invariant infinite impulse response (IIR) difference equation
where w is the feedforward filter order, β(i) are the feedforward filter
coefficients, v is the feedback filter order, α(i) are the feedback filter
coefficients, u(m) is the input signal and x(m) is the output signal [16].

The AR or all-pole model used in our implementation is defined
by setting β(0)=1 and β(i)=0, ∀i>0. A(z)=

∑v
i=0α(i)z−i where

α(0) = 1 is assumed to have all of its zeros within the z-plane unit
circle guaranteeingH(z)= 1

A(z)
, the rational transfer function between

the input u(m) and output x(m), to be a stable and causal filter [15].
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RMSE Cxy

Input Sound C R C R

Alto Flute 0.178 0.324 0.512 0.398
Contrabass Clarinet 0.153 0.273 0.518 0.402
Viola 0.162 0.324 0.596 0.447
Cello 0.110 0.181 0.494 0.386
Woodwind Section 0.143 0.268 0.397 0.323
Horn Section 0.089 0.325 0.470 0.359
Euphonium Section 0.141 0.309 0.313 0.234
String Quartet 0.101 0.205 0.505 0.378
String Section 0.073 0.282 0.519 0.406
Full Orchestra 0.077 0.258 0.443 0.365

Table 1. RMSE and magnitude squared coherence averaged across the
entire spectrum (Cxy) for the acoustic-instrument-based input signals
listed. All comparisons are between synthesised signals and the portion
of the original signals which they are predicting. C denotes results from
the HBDT-CWT and R denotes results from the HBWT.

Driving sequence u(m) is assumed to be a zero-mean white Gaussian
noise process with variance σ2 and thus power spectral density (PSD)
σ2. Setting β(0)=1 allows the gain term of the AR filter to become the
variance σ2 of u(m). Finding estimates of the optimal AR parameters
{α̂(1), α̂(2), ... , α̂(v)} and noise variance σ̂2 enables AR(v) linear
prediction

x̂(m)=−
v∑

i=1

α̂(i)x(m−i)+û(m). (10)

The approach of solving the Yule-Walker equations to obtain AR parame-
ter estimates directly as in [1] has been shown to deliver less reliable esti-
mates and have potential for model instability [17]. Burg’s method is an al-
ternative approach in which reflection coefficients estimates are calculated
first and subsequently AR parameters are obtained by Levinson recursion.
This method has been shown to provide more reliable results and guaran-
tee model stability [15][17] and is thus employed in our implementation.

A scheme for extrapolation of 1D signals by linear prediction
discussed in [18] and [19] is facilitated by an initialised, purely recursive,
transposed direct form II IIR filter. (10) with û(m)=0,∀m is assumed
to predict process x(m) as x̂(m) (in our case predicting coefficients
as b̂cp,n and âcp,N ) and the filter is initialised with all known samples
{x(m−1),x(m−2),...,x(m−v)} (in our case the known bcp,n and acp,N
coefficients) as well as estimated AR coefficients {α̂(1),α̂(2),...,α̂(v)}.
An inherent shortcoming of this procedure however, is that due to the
necessity for stability, the attenuation of the all-pole IIR filter leads
to amplitude decay in the filter’s output over time. This approach is
therefore not employed and input û(m) is provided as a white Gaussian
noise process scaled by its variance σ̂2 which is also estimated by Burg’s
method [15]. Filter initialisation increases the amount of information
available to predictors and was not previously considered in [1].

3. EXPERIMENTAL RESULTS

The experimental results have been derived from a set of pseudo-
harmonic, approximately pitch-stable, vibrato-free sounds produced by
the recorded orchestral sections, ensembles and individual instruments
listed in Table 1. This set is representative of the class of sounds for
which the disclosed analysis and synthesis method in its current form
is particularly suited. All input signals are monophonic, have a pitch of

(a) Reference signal

(b) Signal synthesised through HBDT-CWT

(b) Signal synthesised through HBWT

Fig. 4. Spectrograms of (a) the Horn Section (see Table 1) and (b)(c)
the signals synthesised based on (a) through linear prediction of the
coefficients of the HBDT-CWT and HBWT.

A3 (220 Hz) and a sample rate of 44.1 kHz. Sound files were rendered
from a number of contemporary orchestral sample libraries in the soft-
ware sampler environment Kontakt R©. Individual recordings played by
Kontakt R© are repeated for the extent of each of our rendered files and
amplitude-faded between repetitions to create the illusion of the orchestral
instruments sustaining a note for the duration of each rendered file. As can
be seen in Figure 4 (a) this results in noticeable but not substantial ampli-
tude variation. This is also present in Figure 4 (b) but almost absent in (c).

To quantitatively examine the merit of autoregressive HBDT-CWT
synthesis over its HBWT counterpart a decomposition and autoregressive
analysis of transform coefficients of 1,280,200 samples of each sound
is performed. Coefficient synthesis and subsequent inverse transform
reconstruction then produces an output signal of the same length as the
input signal. The synthesised sounds are compared in Table 1 by RMSE
and magnitude squared coherence averaged across the entire spectrum
(Cxy) to the 1,280,200 samples of each input sound immediately follow-
ing the samples on which analysis was performed. The decomposition
level for both transforms is set to N=4. As can be seen from Table 1,
autoregressive HBDT-CWT synthesis exhibits superiority for all input
signals in both the time domain and the spectral domain. Qualitatively, the
signals synthesised through the HBDT-CWT are almost indistiguishable
from the reference signals. The signals synthesised through the HBWT
counterpart however, bear less perceptual resemblance to the reference
signals, with audible spectral distortion.

4. CONCLUSION

An improvement to the harmonic-band wavelet transform based autore-
gressive synthesis model has been presented through the introduction of
the dual-tree complex wavelet transform. The results demonstrate substan-
tial qualitative and quantitative enhancement of the existing technique.
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