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ABSTRACT 

 

Most of current best performing Acoustic Scene Classification 

(ASC) systems utilize Mel scale spectrograms with Convolutional 

Neural Networks (CNNs). Mel scale is a common way to suit 

frequency warping of human ears, with strict decreasing frequency 

resolution on low to high frequency range. However, we find that 

significant frequency bins are located at mid to high frequency 

range for some acoustic scenes, such as travelling by bus, tram or 

train. In this paper, we show that a better frequency warping scale 

for ASC can be automatically learned from raw spectrograms, 

using Kullback-Leibler (KL) divergence scale. Our KL scale 

spectrograms with CNN method is evaluated on two public ASC 

datasets. The results show that we outperform the Mel scale 

method on both datasets. In addition, we also employ a 

Conditional Generative Adversarial Nets (Conditional-GAN) 

model for data augmentation, to prevent overfitting problem and 

allow further improvements on ASC.  

Index Terms— KL divergence, Frequency Warping, Acoustic 

Scene Classification, CNN, Conditional-GAN 

 

1. INTRODUCTION AND MOTIVATION 

 

Acoustic Scene Classification (ASC) allow devices to sense and 

understand the surrounding environment, using audio signals. ASC 

has been applied to mobile terminals and wearable devices for 

customized services. For example, the wheelchair will 

automatically switch between two service modes according to 

whether the environment is indoor or outdoor [1]. The mobile 

phone will perceive the surroundings, and adjust settings to 

provide a better user experience. 

The growing interest in ASC has motived the IEEE AASP 

Detection and Classification of Acoustic Scenes and Events 

(DCASE) challenge in 2013, 2016, 2017, and 2018 [2]-[5]. In the 

latest DCASE challenges, most of the best performing ASC 

systems utilize spectrogram with CNNs, or combined CNNs with 

other models. Six among them input Mel scale spectrogram into 

CNNs [6]-[11], one input Constant-Q-Transform (CQT) 

spectrogram [12].  

Both Mel and CQT scales are static for all systems. CQT uses a 

series of constant logarithmically spaced filters, which is well 

suited for music data with harmonic structures[13]. However, since 

acoustic environments recordings are mostly non-music signals, 

CQT features are uncommon in CNN for ASC. Mel scale uses the 

perceptual based filter bank judged by listeners, to suit frequency 

warping of human ears[14], which is signal independent and 

perhaps the most widely used scale for spectrogram down sampling. 

Both scales are associated with strict decreasing frequency 

resolution from low to high frequency range. 

However, we find that for some acoustic scenes, such as 

travelling by bus, tram or train, the most discriminative frequency 

bins are located at mid to high frequency range. When above 

mentioned scales are employed for spectrogram down sampling, 

they tend to focus on the low frequency range, which emphasize 

the less significant signal content, while may loss the significant 

details. This may introduce other factor of variation into training 

and inference. We hope to find a better frequency warping scale, to 

help more accurately discriminate the acoustic scenes.  

Solomon Kullback and Richard Leibler introduced the 

Kullback–Leibler (KL) divergence, to measure how one 

probability distribution diverges from a second probability 

distribution [15]. And Bisot uses a KL divergence scale for NMF 

decomposition in ASC[16], to find the bases of discrimination for 

the input of Deep Neural Network (DNN), without intention to 

preserve the time frequency pattern of the raw spectrogram.  
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Fig. 1. Proposed KL divergence based CNN framework for ASC 

with data augmentation 

 

In this paper, we proposed a KL divergence based frequency 

warping scale for ASC, which can be automatically learned from 

raw spectrograms and preserve the original time-frequency pattern. 

Then we use KL divergence scale filter bank to obtain down 

sampled spectrogram. Our KL scale spectrogram with CNN 

method is evaluated on DCASE 2016 and 2017 datasets available 

(DCASE 2018 is not included, since the ground truth labels for 

evaluation dataset are not released yet). The results show that we 

outperform the Mel and CQT scale method on both datasets. The 
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proposed KL system is also compared to the recent published work 

on ASC, including CNN based [9][11] and others [16]-[19]. 

In addition, we employed a Conditional Generative Adversarial 

Nets (Conditional-GAN) [20] model for data augmentation, to 

prevent overfitting problem and allow further improvements on KL 

based ASC. Finally, we summarized our work. 

 

2. FRAMEWORK DESCRIPTION 

 

The proposed KL divergence scale approach with data 

augmentation is depicted in Fig. 1. Details of the KL divergence 

filter bank and Conditional-GAN based data augmentation are 

illustrated as follows.  

 

2.1. From Signals to KL Divergence Spectrograms 

 

The audio signals are transformed into raw power spectrograms. 

Then we learn a KL divergence scale from the spectrograms in the 

training set, based on the one-vs.-rest KL divergences for each 

class. The learning diagram is illustrated in Fig.2. 
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Fig. 2. Learning KL divergence scale from raw spectrograms 

 

2.1.1. Compute KL divergence for each class 

 

We take the normalized logarithm power spectrograms as inputs to 

compute the KL divergence. The one-vs.-rest Jensen–Shannon 

divergence [21] ,k nj  based on KL divergence for each class n are 

calculated at frequency bin k as: 
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Where ,k nP  and ,k nQ  refer to the numerical probabilistic 

distribution  of the normalized logarithmic power for class n and 

the rest classes at frequency bin k, respectively. For discrete 

probability distributions, P and Q , the KL divergence from Q  to 

P  is defined as: 

( || ) ( ) (log ( ) log ( ))KL

x

D P Q P x P x Q x    (2) 

According to ,k nj , we find that for some acoustic scenes, such as 

travelling by bus, tram or train, the most discriminative frequency 

bins are located at mid to high frequency range. 

 

2.1.2. Compute KL-divergence filter bank 

 

For N classes, we average the N divergence values ,k nj  to obtain 

KL divergence measure kJ  at frequency bin k: 
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To get the KL divergence filter bank with M overlapped subbands, 

we first have to choose the bandwidth interval [ ( 1), ( 1)]f m f m   

 1...m M . Since (0) 0f  , and ( 1) 1f M L   , M additional 

frequency bins ( )f m  are calculated as: 
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Now we can create KL divergence filter bank ( )mH k  as Mel scale 

filter bank: 
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2.2. Conditional-GAN Based Data Augmentation 

 

To improve ASC performance, we use Conditional-GAN[20] to 

generated KL spectrogram extracted from the development set. 

Since it is not clear whether every sample generated by 

Conditional-GAN would have equal impact in classification 

performance, we select hard to classified samples by the SVM 

hyper plane for each class as in [8]. Finally, the augmented 

datasets are about two times of the original datasets, which contain 

both real samples from the development set and fake samples from 

generators selected by SVM. They are input into the CNN network 

for training and evaluation. 

 

3. EXPERIMENTAL SETUP 

 

3.1. Dataset and Evaluation Metrics 

 

Our experiments were evaluated on the DCASE2016 and 2017 

dataset, containing 15 different acoustic scenes (included in Table 

2). The total amount of recordings in DCASE challenge were 

partitioned into development and evaluation subsets. The 

development set was further partitioned into four folds of training 

and testing sets, provided by the DCASE challenge organizer. 

Each audio scene has the same number of audio segments. 
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The development set in dcase2017 has 4680 segments of audio 

files, evaluation set has 1620 segments, and each segment of audio 

duration is 10 seconds. The development set in dcase2016 has 

1170 segments, evaluation set has 390 segments, and each segment 

of audio duration is 30 seconds. Audio signals are all sampled at 

44.1kHz and down mixed into mono for further tests. 

We train our model using a cross validation on the 4-fold 

development set. The final results were obtained by averaging over 

all 4 folds, and evaluate on the evaluation set.  
 

3.2. Spectrograms Down Sampling 

 

All signals are pre-emphasized with a factor of 0.95. Then, the pre-

emphasis signal is framed, windowed and Fourier transformed to 

obtain the power spectrogram, wherein the frame length is 40ms 

with 50% hop size, the window function is the Hamming window, 

and the number of Fourier transform bins is 2048.  

The raw power spectrograms are down sampled by KL filter 

banks with 128 subbands, and the output KL spectrogram are 

logarithmically normalized. CQT and Mel spectrograms are 

obtained as KL, with filter banks of 128 subbands, using the cqt 

and mel function provided by the librosa library[22]. 

Finally, the normalized logarithm spectrograms (KL, Mel or 

CQT) are split into short sequences of 100 frames each. Therefore, 

the inputs of the CNN or Conditional-GAN’s discriminator are 

gray images of size 128×100. 

 

3.3. CNN model architecture 

Since we mainly concerned the influence of CNN inputs, the 

employed deep CNN architecture simply followed [10] with some 

modifications. The specifications are shown in Fig. 3. 
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Fig. 3. The CNN model specifications (Weight and bias initial 

method: Xavier initializer; Optimizer: Adam) 

 

3.4. Conditional-GAN model architecture 

We followed [23] with some modifications to build our deep 

Conditional-GAN architecture, as shown in Fig.4. 

After samples generation, we use a soft margin SVM to select 

the discriminative samples, the regularization factor in SVM’s loss 

function is 0.5. 
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Fig. 4. The CGAN model specifications. (we use the audio label y 

as the conditional information, with batch size:100 samples, 

where k, f, s, and p refer to kernel size, filters, stride, and padding 

respectively; Weight and bias initial method: Xavier initializer; 

Optimizer: Adam.) 

 

4. RESULTS 

 

4.1. Influence of Spectrogram Down Sampling 

 

In this section we propose to study the effects of input KL, Mel or 

CQT spectrogram into the CNN based ASC. The results on 

DCASE 2016 and DCASE 2017 are shown in Table 1, with 

accuracy on each four-fold cross-validation and evaluation datasets. 

Average accuracy of four-fold cross-validation is also presented for 

fair comparison. 

 

Table 1. Comparison of experimental results with KL divergence 

Mel scale, and CQT with 4-fold cross-validation on the 

development dataset, and accuracy on the evaluation dataset. 

Dateset Feat. 
Cross-Validation Acc(%) Ave 

Acc 

(%) 

Eva 

Acc 

(%) 1 2 3 4 

DCASE 

2017 

CQT 80.7 75.8 78.9 75.1 77.6 64.9 

Mel 82.3 79.6 80.0 79.3 80.3 67.5 

KL 84.4 81.0 83.8 80.8 82.5 69.3 

DCASE 

2016 

CQT 86.6 85.9 86.4 86.2 86.3 82.3 

Mel 88.1 86.3 87.6 86.8 87.2 84.9 

KL 88.6 88.3 87.6 88.9 88.4 86.7 

 

The results show that KL spectrogram inputs outperform Mel and 

CQT on both data sets. Auto learning from the raw spectrogram of 

ASC datasets helps to improve the accuracy both in the cross-

validation and evaluation. And Mel spectrogram outperform CQT 

on both datasets. This can attribute to the Mel scale associated with 

842



the frequency warping of human ears, which is more general when 

compared with CQT for music signals in ASC systems.  

In Table 2, performance degradations are found for some scenes 

such as Beach, Café, and Home, but we do find that scenes such as 

travelling by Bus, Car, Train, and Tram are improved as expected. 

And average accuracy of KL outperforms Mel approach. 

 

Table 2. Class-wise accuracy comparison between Mel and KL on 

the evaluation set (highlight numbers indicate higher accuracy for 

the scene class). 

Acc. 

(%) 

Dcase2017 Dcase2016 

Mel KL Mel KL 

Beach 25.9 25.0 89.3 88.5 

Bus 43.5 54.6 82.3 92.3 

Café 74.1 61.1 71.5 61.5 

Car 81.5 84.3 100.0 100.0 

City 93.5 93.5 92.3 88.5 

Forest 96.3 97.2 100.0 100.0 

Groce. 76.9 75.9 88.5 88.5 

Home 93.5 79.6 88.5 84.6 

Lib. 43.5 43.5 49.2 65.4 

Metro. 74.1 89.8 84.6 88.5 

Office 77.8 86.1 100.0 100.0 

Park 36.1 38.0 96.2 92.3 

Resid. 66.7 76.9 73.1 84.6 

Train 78.7 78.7 57.7 65.4 

Tram 50.0 55.6 100.0 100.0 

Avg. 67.5 69.3 84.9 86.7 

 

4.2. Influence of data augmentation 

 

In order to further improve the ASC performance, we use the 

Conditional-GAN introduced in section 2.2 to generated, and use 

SVM to selected the KL spectrograms respectively.  

The augmented datasets are about twice the size of the original 

ones. We compare the average ASC accuracies over 4-folds and 

the evaluation accuracy for the CNN classifier trained with or 

without data augmentation. The results are shown in the upper two 

rows of Table 3. 

After data augmentation, the accuracies of KL approach are 

improved on the evaluation set for both datasets, with 2.8% on 

DCASE 2016, and with 4.3% on DCASE 2017. Conditional-GAN 

data augmentation can help to alleviate the overfitting to a certain 

extent and improve the performance of the model. 

 

4.3. Comparison with Other ASC Systems 

 

Table 3 compares the proposed KL approach to the latest 

published papers on the DCASE 2016 and DCASE 2017 datasets 

with mono inputs. The results include average cross validation 

accuracy (short for Dev in Table 3) over all folds, being the 

measure for most previous works. Evaluation accuracy (short for 

Eva in Table 3) is also included. 

For DCASE 2016 dataset, we include two top CNN system in 

DCASE 2016 challenge with mono Mel spectrogram 

inputs[10][11]. Other published ASC results using DNN[16][19] 

and random forest[17] are also included for comparison. It can be 

seen from the table that the proposed KL approaches with or 

without data augmentation outperform other systems both in cross 

validation and evaluation. 

 

Table 3. Comparison with other systems (DA: Data Augmentation) 

System 

D2016 

Acc(%) 

D2017 

Acc(%) 

 

Features 

 

Classifier 

Dev/Eva Dev/Eva   

Proposed KL 88.4/86.7 82.5/ 69.3 KL  CNN 

Proposed KL 

with DA 
94.3/ 89.5 89.8/ 73.6 KL  CNN 

DCASE16 

baseline[3] 
72.5/ 77.2 - MFCC GMM 

Valenti[10] 79.0/ 86.2 - Mel  CNN 

Lee[11] 83.1/ 84.6 - Mel CNN 

Mun[19] 86.3/  - - MFCC DNN 

Abidin[17] 85.0/  - - 
LBP/H

OG 

Random 

Forest 

Bisot[16] 82.5/  - - 
KL-

NMF 
DNN 

DCASE17 

baseline[4] 
- 74.8/ 61.0 Mel MLP 

Piczak[24]  82.4/ 70.6 
Spectro

gram 
CNN 

Jimenez[18] - 78.6/  - 
emoco-

nf 
SVM 

 

For DCASE 2017 dataset, we include one top CNN system in 

DCASE 2017 challenge with mono inputs and data 

augmentation[24], and one published paper with ASC results [18] 

on DCASE 2017. It can be seen from Table 3 that the proposed KL 

approach with data augmentation is also the best performing 

system for both measures. 

 

5. CONCLUSIONS 

 

This paper proposed a novel approach to obtain KL divergence 

scale spectrograms for CNN based acoustic scene classification. By 

learning KL divergence scale from raw spectrograms in ASC 

training datasets, we can get the specified spectrogram with better 

discrimination. Our algorithm can be readily extended to other 

audio and speech processing systems for spectrogram down 

sampling, simply by modifying the KL divergence scale on the 

associated training datasets. And we verified that Conditional-

GAN based data augmentation can help to prevent overfitting 

problem and allow further improvements on ASC. Our results 

clearly show the proposed approach achieved state of the art 

performance on two public datasets with mono inputs. However, 

recent work can achieve further improvements on combining the 

CNN with other models[8], applying CNN ensembles[9], or using 

binaural inputs[8][12]. These approaches will be considered for 

our future work. 
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