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ABSTRACT

In this paper, we propose a statistical framework to prune feature
maps in 1-D deep convolutional networks. SoundNet is a pre-trained
deep convolutional network that accepts raw audio samples as input.
The feature maps generated at various layers of SoundNet have re-
dundancy, which can be identified by statistical analysis. These re-
dundant feature maps can be pruned from the network with a very
minor reduction in the capability of the network. The advantage of
pruning feature maps, is that computational complexity can be re-
duced in the context of using an ensemble of classifiers on the lay-
ers of SoundNet. Our experiments on acoustic scene classification
demonstrate that ignoring 89% of feature maps reduces the perfor-
mance by less than 3% with 18% reduction in computational com-
plexity.

Index Terms— Pruning, SoundNet, statistical analysis, acoustic
scene classification.

1. INTRODUCTION

Recently deep convolutional networks (CNN) have shown perfor-
mance equivalent to that of a dermatologist in processing images
for detecting skin cancer [1]. Several networks have been success-
fully utilised in various computer vision and image analysis tasks,
whereas their use in processing raw audio signals are only coming
up. The lack of large labeled datasets as in the vision community has
held back the creation of large-scale networks for the processing of
raw audio signals [2, 3]. Typically, most networks processing audio
signals utilise the spectrogram matrix (or its representation in image
form) [4, 5]. Recently, the deep network SoundNet has been created
for analysis of raw audio waveforms [3]. SoundNet showed good
performance in various audio processing tasks [6, 7].

An issue which has been studied recently is that of pruning
large-scale networks, again mostly in computer vision. Complex
networks typically have thousands of parameters, some of which
can be discarded. For example, the study in [8] proposed an
energy-driven procedure to prune weights layerwise in networks
like AlexNet and GoogLeNet. The study in [9] measured the im-
portance of units in the second-to-last layer before the classification
layer, and has utilised this information during training. Units with
lesser importance are pruned without affecting performance signifi-
cantly. In [10], the authors reduced storage requirements by pruning,
quantization and Huffman coding of the weights.

However, the shortcomings of most of these methods are that it
produces irregular networks which may not have significant reduc-
tion in computational cost owing to removal of weights only [11].
The irregular networks require extra efforts to improve convergence
speed and performance. In addition, due to irregular connections,
these networks have difficulty on parallel computation too [12].
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In this regard, [13] reduces the computational cost of CNNs by
removing the filters with smallest sum of weights together with their
connecting feature maps. The study in [14] considers filter pruning
as an optimization problem, and eliminates filters based on statistics
computed from its next layer. The study in [15] reduces the number
of input channels for each filter and the number of filters in a given
layer based on low variance-criterion. These filter pruning meth-
ods reduces computational complexity significantly. However, the
pruned networks have to be fine-tuned to maintain the performance.
Hence, these pruning strategies can be considered data dependent.

Some recent studies have attempted to improve performance by
not just utilising the features from last layer being fed in the clas-
sifier, but also using intermediate layers. For example, the studies
[16, 17] seek to combine features from multiple layers in fast R-
CNN and VGG16 before making a prediction for an object detection
task. The study in [18] developed an ensemble of classifiers utilizing
information from intermediate layers of SoundNet.

In this work, we propose a pruning framework to identify re-
dundant feature maps from various layers of a pre-trained network
(henceforth called the baseline network), for compact layer-wise fea-
ture representation. Our hypothesis is that, some feature maps give
similar responses to inputs of various classes, thereby reducing their
utility in discrimination. We call such feature maps redundant. We
identify redundant feature maps using three statistical measures. In
the context of utilizing an ensemble of classifiers for feature maps
from various layers, redundant feature maps can be ignored. This
results in a reduction of computation during inference of the pre-
trained model, and during the training phase of the classifier ensem-
ble. Moreover, since the baseline network is essentially unchanged,
there is no need for fine-tuning the pruned network. This is espe-
cially important when there is a lack of large amounts of data.

Our framework identifies the redundant feature maps for dif-
ferent layers independently using significance-based, entropy based,
angle deviation based measures across different classes. Since these
measures are estimated collectively using examples from various
classes, between-class information is incorporated for pruning. The
key advantages and major contributions of this paper can be summa-
rized as follows:

e Our proposed statistical framework can be applied to pre-
trained networks, and simultaneously reduces the dimension-
ality and computational complexity by ignoring redundant
feature maps. The proposed framework also preserves the
architecture of the baseline network.

e In experiments on SoundNet, the proposed method utilizes
the hidden information and reduces computational complex-
ity by approx. 18% using only 11% of feature maps with a
degradation of performance less than 2.80% on two acoustic
scene classification datasets.
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Fig. 1. SoundNet architecture [3]. (a) convolution layer architecture,
convX denotes the output of X" convolution layer output and p-
convX denotes the output of batch normalization layer. (b) 8-layer
architecture with CX and PX as X*" convolution and pooling layers
respectively.

The rest of this paper is organized as follows. In section 2, we
briefly introduce SoundNet and illustrate how redundancy of feature
maps can be determined. Subsequently, the proposed method is de-
scribed in section 3. Performance evaluation and conclusions are
included in section 4 and 5 respectively.

2. BACKGROUND

2.1. A brief on SoundNet

SoundNet [3] is a 1D convolution neural network (CNN) trained on
unlabeled raw audio signals using transfer learning from unlabeled
video. The 8-layer SoundNet has the architecture as shown in figure
1. Similar to conventional 2D-CNNs used for images, SoundNet has
1D feature maps. The size and number of feature maps for each layer
is shown in the figure 1 (b). For example, convolution layer C1 has
16 feature maps each of size 661501 (when input to the network is
30 second long audio samples at 44.1 kHz).

2.2. Identifying redundant feature maps in SoundNet

In previous work [18] on SoundNet, aggregation of feature maps
using either sum or max pooling was used to transform them into
scalar values. Thus, IV feature maps of dimension 1 X s are reduced
into an N dimensional feature vector. This is especially useful for
dimensionality reduction when feature maps from various layers are
being utilized by an ensemble of classifiers. But this approach can
utilize all feature maps including the redundant ones.

This can be observed from Figure 2 (A), where (a)-(f) illus-
trates the feature maps from C3 layer of SoundNet for audio ex-
amples of four acoustic scene classes from LITIS Rouen’s dataset
[19]; shop, hallgare, tubestation and kidgame , (a)-(c) illustrates the
feature maps activated differently and (d)-(f) shows the similarly ac-
tivated feature maps. Figure 2 (B) shows distribution of a given fea-
ture map for the same four examples. The first two columns (g), (h)
show different distribution for different classes and third column (i)
shows similar distribution across classes. With this visual observa-
tion, we aim to identify and eliminate the similarly activated feature
maps (e.g. 13, 30, 47 as shown in figure 2) for different classes.
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3. PROPOSED METHODOLOGY

In this section we describe three statistical frameworks to quantify
and eliminate redundant feature maps. We utilise a set of feature
maps from a particular layer of SoundNet, which are generated by
examples of all classes of interest. Here, the classes come from
acoustic scenes. Each example generates N feature maps of size
1 x s. Let there be p examples, and let the set of feature maps,
standardize to zero mean and unit variance, be denoted P. Thus, P
contains N elements each of size RP*®. Let each row of the matrix
(RP**) be denoted as x, € R®.

ANOVA-based method: In this method, we perform one-way anal-
ysis of variance (ANOVA) hypothesis test on each element of size
RP** of P independently. The null hypothesis is that each row x,
of matrix (R”*®) have same mean. The hypothesis is validated based
on the significance value (p-value) given by ANOVA [20]. The pro-
cedure to compute p-value is explained as follows:

e Compute the “degree of freedom between” (dfy) and “degree
of freedom within” (df.,) samples, given as p — 1 and (s —
1) x p respectively.

e compute the F'-value as given in equation 1.
po X (=2 = 0 36 (@na = 70)”)

dfb s —
dTw X Z:l > a=1 (Tnd — Tn)?

ey
where x4 € RP*®, x; is the average of all elements in matrix of
size RP*® (an element of P), Z,, is the mean of x,. F denotes the
ratio of variance, between and within samples. The p-value can be
computed using F-distribution table, given the F', df,, and dfy. If
the probability value (p-value) is very high, it means that F'-statistic
value is small which tells that the samples of p examples for a given
feature map have same mean and they are from the same distribution.
If the p-value is low, it means that F'-value is very large which indi-
cates that the samples are different and they are not from the same
distribution, which signifies that the feature map is important.
Entropy-based (DE) method: In this method, the differential en-
tropy (DE) [21] of each element € RP*® of P indicates the utility
of each feature map. A feature map with higher entropy is more
important than the feature maps having low entropy value.

p
() = =5 log pu(xn),
p n=1
The entropy is given in equation 2, here pr(xa) is k nearest
neighborhood (k-nn) density estimate, 7 (Xn) is the Euclidean dis-
tances to the k-nn of xp, in P\ xn and 7°/2 /T'(s/2+1) is the volume
of the unit-ball in R®, I'(.) denotes the gamma function [21].
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Cosine-similarity (CS) based method: The method measures the
cosine angle between a given feature map and other feature maps of
an example, denoted as cos ¢, where n varies from 1 to p and z
varies from 1 to N. Then the standard deviation (o) of the cosine
similarity, across the p examples gives an indication of the utility of
each feature map and is given by equation 4. A feature map with
higher angle deviation is more important than others having low de-
viation of angle.

Pr(Xn)
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Fig. 2. (A) Selected feature maps from C3 layer of SoundNet. (a)-(f) shows the feature maps 12, 29 and 56 for examples from four acoustic
scene classes: shop, hallgare, tubestation, kidgame (each class in different colours). Feature maps (a)-(c) are more informative, as it shows
different responses for different classes. Feature maps (d)-(f) are less important as they respond similarly. (B) Distribution of feature maps
12, 29 and 30 for the same examples. (g) and (h) have different distributions and (i) have similar distributions. (For better visualization in
(A), each response for the feature map has been scaled to maximum unit magnitude with unit offset between each consecutive response.)

where cos ¢ denotes the average of cosine similarity of p examples
for a given feature map .

Each of the above methods give the utility of feature maps in

terms of probability, informativeness and angle deviation respec-
tively. By ranking the feature maps, their relative importance can
be incrementally utilized. The ranking of feature maps in ANOVA-
based method is in the ascending order of significance value. While
in DE and CS methods, the ranking is in the descending order of
entropy and angle deviation respectively. For selection of a set of
top ranked feature maps to be used for classification, we propose a
greedy technique.
A greedy algorithm for selection of feature maps: Each algorithm
in the previous section gives the IV feature maps ranked (A) in order
of their utility. Our objective is now to choose the top [ feature maps
so that the remaining N — [ feature maps can be ignored. A heuristic
that can be used here is the representation ability of the top m fea-
ture maps, as m varies from 1 to [. This is done by estimating the
Kullback-Leibler divergence (Dxi.) of the discrete probability dis-
tribution (h) of the top m feature maps with respect to the discrete
probability distribution (H) of all the /N feature maps and is denoted
as ¥[m] = Dxv(h|/H).

The stopping criteria for the greedy procedure is when the cu-
mulative absolute difference of KL-divergence changes by less than
€ as additional p feature maps are added. The greedy algorithm is
summarized in algorithm 1.

4. PERFORMANCE EVALUATION

4.1. Datasets Used and Experimental setup

We use two audio scene classification (ASC) datasets for evaluation
purposes: (a) TUT DCASE 2016 ASC dataset [22], comprising of a
development set and an evaluation set, each of which has 15 audio
scene classes, and, (b) Environmental Sound Classification (ESC-
50) dataset comprising of 50 audio scene classes [23]. An ensemble
based classification procedure as proposed in [18] is opted for classi-
fication. The set P used to determine which feature maps to prune is
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Algorithm 1 A greedy algorithm to select top-I feature maps

input : A: Ranked indexes of feature maps.
H: Distribution of all feature maps of p examples.
P: A set of N elements each of size RP**.
p and € are stopping criterion hyper-parameters.
output: Indexes of top-/ feature maps ().
# Compute KL div. b/w partial and full set of feature maps.
for m < 1 to size(A) do
A=]] # initialize partial set as an empty set.
A.append (Al : m]) # append first m feature map index.
h : distribution of feature maps indexed by A of p examples.
W[m] = Dxu(h[H)
end
# Select top | feature maps meeting stopping criterion.
for [ < 1 to size(V) do
# Calculate the change in KL div. b/w each consecutive p indexes.
forw <+ 0top—1do
| dwl=9(+w)—V(l+w+1)
end
# Verify the stopping criterion.
if ||d]]1 < e then
E=A[1:]]
break
end if

# return &, the selected indexes.

end

a subset of the DCASE development data. This consists of 10 exam-
ples from each of the 15 classes, resulting in p = 150. This subset
of the data is not utilised for evaluating the proposed framework.
The pruning procedure described in section 3 is applied to each
of the 15 layers of SoundNet (from P1 to C7 including the batch nor-
malization layer as shown in figure 1). The number of nearest neigh-
bors (k) in entropy-based method (section 3) is set equal to 10. The
stopping criteria is met by setting € and p, 0.01 and 10 respectively.
The performance of the proposed framework is measured in terms



of classification accuracy over 4-fold and 5-fold cross-validation for
DCASE and ESC datasets respectively. The overall proposed frame-

work is shown in figure 3.
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4.2. Results and Analysis

Figure 4 shows the number of redundant feature maps obtained after
the three pruning procedures. This figure indicates that majority of
the feature maps in the later layers (conv7 and p-conv7) are redun-
dant and can be removed. The number of redundant feature maps re-
duces towards the earlier layers (approximately all the feature maps
are not redundant for conv2 and p-conv2 layers). The number of
feature maps retained after ANOVA, DE and CS pruning is approx.
32%, 50% and 57% respectively (averaged across all layers).

A hybrid method, which uses the intersection of the redundant
feature maps returned by each method is also evaluated. The hybrid
method retains about 11% from all feature maps of SoundNet.

Figure 6 shows how the KL divergence varies as more and more
feature maps are included in the representation. In the figure, the
stopping criteria of ¢ = 0.01 is met when feature maps with rank
105-115 are appended to the set of selected feature maps.

Computational complexity for feature representation: The se-
lected feature maps are further collapsed to ! scalar values by using
sum pooling before feeding it to the classifier ensemble. The total
multiply and accumulation (MAC) operations required to compute
the scalar values from an s-length feature map is of twice the order
of s ( s multiplications and s-1 additions). We define (Rcc) as total
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reduction in computational complexity (CC) for feature representa-
tion of all layers and it is given as follows:

RCC _ chaseélzbasefnecreduced % 100
Here, CChaseline represents the total MAC for feature representation in
the baseline network and CCrequced 1 the total MAC after eliminating
redundant feature maps. The Rcc for ANOVA, DE, CS and hybrid
methods is given in figure 5. The Rcc for hybrid method is approx.
18%, since it chooses smallest subset of feature maps as compared
to the other methods.

Dimensionality reduction and ensemble classifier complexity:
The complexity required to train a non-linear support vector ma-
chine (SVM) for each layer is O(N x M); N is the number of
features maps and M is total number of examples. Since for each
layer the reduction in dimensionality is equivalent to the number of
pruned feature maps for the particular layer as shown in figure 4,
the model complexity for each layer reduces by O((N — 1) x M);
N — [ is the number of pruned feature map for the particular layer.

Performance variation: The accuracy of the baseline network and
the pruned network (with different pruning frameworks) for the
two different datasets is shown in figure 7. For all pruning meth-
ods, including the hybrid method, the reduction in accuracy is not
more than 0.8% and 1.63% for DCASE development and evaluation
datasets respectively. The same set of feature maps derived from the
set P is used on the ESC-50 dataset. The performance on the ESC
dataset, which has 50 scene classes, does not degrade beyond 2.8%.
This shows the generalization ability of the proposed framework.
We note that ANOVA-based method selects the smallest subset
of important feature maps with least reduction in performance as
compared to DE and CS-based methods.

5. CONCLUSION

In this paper, we propose a statistical pruning framework to elimi-
nate redundant feature maps learned at various hidden layers in pre-
trained audio network. The proposed framework reduces computa-
tional complexity and dimensionality reduction for layer-wise analy-
sis while using an ensemble of classifiers. In addition to this, the pro-
posed framework preserves the baseline architecture fully and does
not require fine-tuning.
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