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ABSTRACT
Acoustic scene classification is the task of identifying the scene from
which the audio signal is recorded. Convolutional neural network
(CNN) models are widely adopted with proven successes in acoustic
scene classification. However, there is little insight on how an au-
dio scene is perceived in CNN, as what have been demonstrated in
image recognition research. In the present study, the Class Activa-
tion Mapping (CAM) is utilized to analyze how the log-magnitude
Mel-scale filter-bank (log-Mel) features of different acoustic scenes
are learned in a CNN classifier. It is noted that distinct high-energy
time-frequency components of audio signals generally do not cor-
respond to strong activation on CAM, while the background sound
texture are well learned in CNN. In order to make the sound texture
more salient, we propose to apply the Difference of Gaussian (DoG)
and Sobel operator to process the log-Mel features and enhance edge
information of the time-frequency image. Experimental results on
the DCASE 2017 ASC challenge show that using edge enhanced
log-Mel images as input feature of CNN significantly improves the
performance of audio scene classification.

Index Terms— Convolutional neural network, acoustic scene
classification, sound texture, class activation map, edge enhance-
ment

1. INTRODUCTION

Large amount of multimedia information becomes easily accessi-
ble nowadays. The performance of speech and image recognition
systems has been significantly improved with the use of deep neu-
ral networks and exploding amount of training data. Audio-related
tasks, e.g., Acoustic Scene Classification (ASC) [1, 2, 3], Sound
Event Detection (SED) [4, 5, 6] and Audio Tagging [7, 8, 9, 10],
have also received increasing attention in recent years. They have
many real-world applications. For example, context-aware mobile
devices could provide better responses to their users in accordance
with the acoustic scene. A smart home-monitoring system could de-
tect unusual incidences by using audio. An audio search engine is
able to retrieve information efficiently from massive online record-
ings.

Acoustic scene classification (ASC) is the process of identify-
ing the type of acoustic environment (scene) where a given audio
signal was recorded. It has been a major task in the IEEE AASP
Challenge on Detection and Classification of Acoustic Scenes and
Events (DCASE) since 2013. In the 2017 ASC challenge, most of
the best-performing models were based on convolutional neural net-
works (CNN). Mun et al. [11] addressed the problem of data in-
sufficiency and proposed to use the Generative Adversarial Network
(GAN) [12] to augment training data. Han et al. [13] was focused on
preprocessing of input features. Fusion of CNN models with prepro-
cessed input features led to improved overall model performance.

Despite the clearly demonstrated effectiveness of CNN-based
models in the ASC task, there is little insight on how an audio scene

is perceived in a CNN model. Whilst similar issue has been ex-
tensively explored in image classification. In [14], Zeiler & Fergus
used the De-convolutional Network [15] to visualize and understand
CNN. Springenberg et al. applied the guided backpropagation [16]
to obtain sharp visualization of descriptive image regions. The Class
Activation Mapping (CAM) [17] was proposed as a means of high-
lighting the discriminative image regions for specific output classes
in CNNs with global average pooling. Selvaraju et al. developed
a generalized version of CAM, named the Gradient-weighted Class
Activation Mapping (Grad-CAM) [18], which could be applied to a
broader range of CNN models.

The input of an audio classification model is usually a time-
frequency representation extracted from the raw audio waveform.
Among the various types of time-frequency representations, the
logarithmic-magnitude Mel-scale filter bank (abbreviated as log-
Mel) feature is widely adopted. Similar to spectrogram, a log-Mel
feature is a visual representation of the frequency content of sounds
as they vary with time. Given an audio signal with audible sound
events such as “bird singing”, “speech”, “applause”, these sound
events can also be identified in the corresponding log-Mel feature
based on their distinct visual patterns. From this perspective, we
may call a log-Mel feature as an image. Visualization of CAM
using the log-Mel “image” allows the comparison between machine
perception and human interpretation.

In this paper, we present an attempt to understand how CNN
models learn to identify an acoustic scene from log-Mel feature rep-
resentations. The investigation starts with benchmark systems with
log-Mel features and different CNN models. The method of CAM is
used to provide visualization of the CNN activation behavior with re-
spect to input features. The observed CAMs for acoustic scene data
suggest that CNN classification models tend to emphasize on the
overall background sound texture of log-Mel input features, whilst
individual sound events in the scene are of less importance. Hence
we propose to use the Difference of Gaussian (DoG) and the So-
bel operator to pre-process the log-Mel feature to make the back-
ground texture information more salient. We also use the method of
background drift removing with medium filter as described in [13]
as a comparison to our methods. These texture-enhanced features
demonstrate an improved performance on ASC.

2. BACKGROUND

2.1. Class Activation Mapping

The class activation mapping [17] highlights the class-specific dis-
criminative regions in the input image. It can help understand the
CNN behavior and visualize the internal representation of CNNs.
It can also be used for weakly supervised object localization task.
However, the CAM is only applicable to CNNs with global aver-
age pooling (GAP). Suppose we have a trained CNN network with
global average pooling. There are C output classes. The number of
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channels in the last convolutional layer is K. The point (x, y) in the
kth feature map before GAP as fk(x, y). The weight in the output
layer is denoted as wc

k, indicating the importance of the kth feature
map for class c. Then the classification score of class c (before the
softmax) is given by

yc =
∑
k

wc
k

∑
x,y

fk(x, y) =
∑
x,y

∑
k

wc
kfk(x, y). (1)

Based on equation 1, the spatial elements of class activation mapMc

for class c is given by

Mc(x, y) =
∑
k

wc
kfk(x, y). (2)

The Gradient-weighted Class Activation Mapping (Grad-CAM)
[18] is a strict generalization of CAM. It replaces the weight of
each activation map wc

k with the average gradient back-propagated
to each feature map, which is given by

αc
k =

1

Z

∑
i,j

∂yc

∂fk(i, j)
, (3)

where Z is the number of pixels in the feature map. Notice that
fk in Grad-CAM can be from any convolutional layers in CNN, not
limited to the last convolutional layer. Thus, the Grad-CAM can be
applied to a larger variety of CNN models, such as those with fully
connected layers (e.g. AlexNet, VGG).

In this paper, we propose to use Grad-CAM to analyze the
trained CNN models for ASC task. Through empirical analysis of
class activation maps w.r.t. the ground-truth scene classes, we ar-
gue that CNN models are more focusing on the overall background
sound texture for classifying acoustic scenes. The distinct sound
events (foreground) are usually of less importance in classification.

2.2. Sound Texture

Texture is described as an attribute that characterize spatial arrange-
ment of pixel intensities in specific regions of an image. In the area
of computer vision, texture analysis is a well studied topic [19, 20,
21, 22].

For audio signal, the notion of “sound texture” has not been seri-
ously discussed. An visual analogy of sound texture given by Saint-
Arnaud et al. [23] is that sound texture is like a wallpaper which
has local structure and randomness, while from a large scale the fine
structure characteristics must remain constant. There were a number
of studies on sound texture modeling [24, 25, 26], and commonly
mentioned sound textures refer to wind, traffic, and crowd sounds.

In an acoustic scene, there exist various sound sources, which
contribute to a mixture of diverse sound events. In audio recordings
from acoustic scenes, persistent environment sounds with certain
sound textures, e.g., crowd, traffic, form “background” of the scenes.
Whilst certain sparsely occurred sound events, e.g., bird singing, hu-
man coughing, are more noticeable and could be regarded as distinct
“foreground” sounds.

2.3. Feature Preprocessing Methods

2.3.1. Difference of Gaussian

The Difference of Gaussian (DoG) is a well-known method of edge
detection in image processing. Briefly speaking, the DoG filtering
includes two steps: blurring an image using two Gaussian kernels
of different standard deviations, and subtracting one blurred image

from another to obtain the edge image. The purpose of Gaussian
kernel is to suppress the high (spatial) frequency information (which
serves as a low-pass filter). The value of standard deviation decides
the range of frequency being suppressed. DoG essentially acts like a
band-pass filter. It removes not only high (spatial) frequency noise,
but also homogeneous regions in the image.

2.3.2. Sobel Operator

The Sobel operator [27] is commonly used for edge detection in
computer vision. It comprises two 3× 3 convolution kernels, which
are used to obtain the gradient approximations in the horizontal di-
rection (Gx) and vertical direction (Gy). For an image A, we have

Gx =

+1 0 −1
+2 0 −2
+1 0 −1

 ∗A, Gy =

+1 +2 +1
0 0 0
−1 −2 −1

 ∗A. (4)

The gradient approximations in different directions can be combined
as G, as the result of Sobel filtering:

G =
√
G2

x +G2
y. (5)

2.3.3. Removing Background Drift Using Medium Filter

Median filtering is useful in distinguish objects in an image with
transitional background. By subtracting the medium-filtered image
from the original one, the background drift is removed and those
sharp changes (edges) are preserved [28]. For the ASC task, me-
dian filtering was found to be very effective in feature pre-processing
[13], though the determination of kernel size for optimal perfor-
mance is not straightforward.

3. ACOUSTIC SCENE CLASSIFICATION SYSTEM

3.1. System Design

Experiments on scene visualization and classification are all based
on the TUT Acoustic Scenes 2017 database [2]. This database was
adopted for the DCASE 2017 ASC challenge. It has two subsets:
the development dataset (for model training and cross validation)
and the evaluation dataset (for performance evaluation).

All audio samples in the dataset are 10-second long. They are
cut into 1-second segments with 0.5 second overlapping. Short-Time
Fourier Transform (STFT) is applied to each of the 1-second seg-
ments, with window length of 25ms, window shift of 10ms and FFT
length of 2048. 128-dimension log-Mel filterbank features are de-
rived from the FFT spectrum for each frame. Feature components of
all frequency bins are normalized to have zero mean and unit vari-
ance based on training data statistics.

The CNN model receives the log-Mel feature image of a 1-
second segment as the input, and generates a classification score for
the segment. The classification score for a 10-second audio sample
is obtained by averaging the segment-level scores.

3.2. Model Structure

We examine the performance of two different CNN models. The
CNN-FC model as detailed in Table 1 is inspired by the AlexNet
[29] and VGG [30] model. After the last convolutional layer, the
feature maps are flattened to obtain the input for the fully connected
layer.
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Table 1: The CNN-FC model structure.

Input 1x100x128
1 3x3 Convolution (pad-1, stride-1)-64-BN-ReLU
2 3x3 Max Pooling (stride-2)
3 3x3 Convolution (pad-1, stride-1)-192-BN-ReLU
4 3x3 Max Pooling (stride-2)
5 3x3 Convolution (pad-1, stride-1)-384-BN-ReLU
6 3x3 Max Pooling (stride-2)
7 3x3 Convolution (pad-1, stride-1)-256-BN-ReLU
8 3x3 Convolution (pad-1, stride-1)-256-BN-ReLU
9 3x3 Max Pooling (stride-2)

Flattening
10 Dropout (p=0.5)
11 Fully Connected (dim-2048)-BN-ReLU
12 Dropout (p=0.5)
13 Fully Connected (dim-2048)-BN-ReLU
14 15-way SoftMax

Table 2: The CNN-GAP model structure.

Input 1x100x128
1 3x3 Convolution (pad-1, stride-1)-64-BN-ReLU
2 3x3 Max Pooling (stride-2)
3 3x3 Convolution (pad-1, stride-1)-192-BN-ReLU
4 3x3 Max Pooling (stride-2)
5 3x3 Convolution (pad-1, stride-1)-384-BN-ReLU
6 3x3 Convolution (pad-1, stride-1)-256-BN-ReLU
7 3x3 Convolution (pad-1, stride-1)-256-BN-ReLU
8 3x3 Max Pooling (stride-2)
9 Global Average Pooling
10 15-way SoftMax

The CNN-GAP model described in Table 2 is constructed by
replacing the fully connected part in CNN-FC model with a global
average pooling layer, and removing one of the max pooling layer to
obtain higher resolution for CAMs. Global average pooling (GAP)
has been proven to be a good regularizer for CNNs in image clas-
sification [31]. GAP is also used in CNNs with audio input feature
[32, 33, 34, 35]. The same setup for training and testing is adopted
for both models unless stated otherwise.

4. VISUALIZATION WITH CLASS ACTIVATION MAPS

For a given audio segment (1-second long in this study), the short-
time log-MEL features could be viewed as a gray-scale image, with
the x axis and the y axis representing time and frequency respec-
tively. The image is combined with class activation maps for lo-
calizing the discriminative time-frequency regions. The activations
are derived for the ground-truth scene class, and thus can be used to
represent the input patterns learned by the CNN.

The proposed CAM visualization of audio segment is created
by mixing 3 image components. The first component is the gray-
scale log-MEL image. The time-frequency regions that positively
influence the classification score of the ground-truth scene class are
indicated by a semi-transparent image in red color. The negative ac-
tivations are viewed as another semi-transparent image of blue color.
Being different from [18], both positive and negative activations are
included for the observation of acoustic scene features.

Figure 1 gives a few examples of gradient-weighted CAM visu-

alization derived from the 8th layer feature maps in CNN-FC model.
These 10-second audio samples are from the training set of DCASE
2017 dataset. In Figure 1b, the white horizontal lines during the first
3 seconds (inside the green dashed line rectangle) are “bird singing”
sounds. It is noted that these distinct sound events are not associ-
ated with strong positive (red) or negative (blue) activation. In other
words, in CNN classification, these sounds are not regarded as rep-
resentative patterns for the residential area scene.

Figure 2 shows the examples of CAM visualization derived
from the 7th layer feature maps in CNN-GAP model. As we can
see from these examples, the magnitudes of positive activations are
much higher than those of negative activations. The activations are
concentrated on a few frequency bins, unlike the CNN-FC model.
In addition, the eye-catching bright lines (foreground sounds) in the
log-MEL images are associated with low activation intensity. This
suggests that the CNN-GAP model performs classification based on
the background “texture” of input image.

It frequently happens that the regions of distinct sound events
in the log-MEL images have small activation intensity, which might
be counter-intuitive. However, further investigation is needed to find
out if these sound events are really trivial for classification, or it is
because the CNN models fail to learn these patterns.

(a) metro station

(b) residential area

(c) train

Fig. 1: CAM visualizations w.r.t the ground-truth scene classes.
They are derived from the CNN-FC model with log-Mel input. The
3 audio samples are recorded in (a) metro station, (b) residential
area and (c) train respectively. High energy regions (distinct sound
events) are not strongly activated. It seems that the model is trying
to learn the texture of background sounds.

5. ENHANCING THE EDGE INFORMATION IN LOG-MEL
IMAGES

5.1. Edge-Enhanced Features

We propose to use DoG and Sobel operator to enhance the edge in-
formation in the input images, making the background texture more
salient. Figure 3 gives a few examples of edge-enhanced images and
the corresponding unenhanced ones.

To obtain the DoG enhanced image, we apply Gaussian filter
with standard deviation 1 to the original log-Mel image. Then we
apply another Gaussian filter with standard deviation

√
2 on the orig-

inal image to obtain another blurred image. Subtraction between
these two blurred image gives the result of DoG. DoG is able to re-
move high spatial-frequency components and homogeneous regions
of images.
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(a) metro station

(b) residential area

(c) train

Fig. 2: CAM visualizations w.r.t the ground-truth scene classes.
They are derived from the CNN-GAP model with log-Mel input.
The audio samples are the same as those in Figure 1. Different from
CNN-FC model, there is little negative activation for CAMs derived
from CNN-GAP model.

The result of Sobel operator is an image with pixel values be-
ing equal to the gradient magnitudes of the respective pixels in the
original image. Comparing to DoG, the images enhanced by Sobel
operator have more fine-grained texture.

The above mentioned edge-enhanced images are compared to
the one obtained by median filtering. The kernel size of medium
filter is empirically set to (51, 7) where 51 refers to time frames
(about 0.5 second) and 7 refrs to frequency bins. It is noted that
median filtering process has a high computation cost, i.e., requiring
to calculate the median of each (51, 7) input window for each output
pixel.

Fig. 3: Illustration of edge-enhanced input features for CNNs. (From
left to right) First column: Original log-Mel image; second column:
edge-enhanced images with DoG; third column: edge-enhanced im-
ages with Sobel operator; fourth column: background drift removed
images with medium filter.

5.2. Evaluating the Edge-Enhanced Features

Table 3 shows the accuracy (averaged over 3 trials) for differ-
ent types of input features. The “LogMel-128” means the 128
dimensional log-Mel feature, which is considered as benchmark
feature. “DoG” and “Sobel” refer to the DoG enhanced and Sobel
operator enhanced LogMel-128 features, respectively. “Medium”
refers to the background-drift-removed LogMel-128 feature (using
medium filter). The baseline system accuracy is provided by the

Table 3: Experiment results for CNN-FC and CNN-GAP models
trained with different input features. The evaluation data in TUT
Acoustic Scenes 2017 database is used for evaluation. Table ele-
ment is the overall classification accuracy (averaged over 3 trials).
The accuracy for the baseline setup is from the DCASE 2017 ASC
challenge [36].

Feature\Model CNN-FC CNN-GAP Baseline
Baseline - - 0.610
LogMel-128 0.658 0.681 -
DoG 0.720 0.722 -
Sobel 0.701 0.716 -
Medium 0.757 0.754 -

DCASE 2017 ASC challenge [36]. It can be seen that applying
edge-enhancement techniques leads to significant improvement of
classification performance. We also check the CAM visualizations
of CNN models with the edge-enhanced input images, and the ob-
servations in Section 4 are still valid. While the CNN-FC model and
CNN-GAP model are different in visualized patterns of CAM, they
show similar performance given the same input feature.

While the performance of using “DoG” feature is not as good
as the “Medium” feature, DoG is computationally much more effi-
cient than median filtering. For edge-enhanced features from 100
log-Mel images of size (1000, 128), computing “Medium” features
takes 272.02 seconds with kernel size (51, 7) in our computer. If the
kernel size is changed to (3, 3), the computation time is 5.7 seconds.
On the other hand, applying DoG and Sobel operator takes 0.46 and
0.30 second respectively.

6. CONCLUSION

In this paper, we illustrate the use of class activation mapping for
analysis of CNN behavior towards audio features. We find that the
distinct sound events in log-Mel features are usually not regarded as
representative patterns of acoustic scenes. Regarding ASC task as a
sound texture classification problem, we use the DoG, Sobel opera-
tor and background drift removing to enhance the edge information
in the log-Mel image. Using these methods, the model performance
is improved significantly compared to the benchmark.
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