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ABSTRACT 
 
This paper proposes the co-prime circular microphone array 
(CPCMA), which applies co-prime array theory to circular 
microphone arrays. Compared with a conventional uniform 
circular array (UCA) with the same number of microphones 
and radius, the CPCMA achieves beampatterns with a 
narrower main lobe and fewer side lobes, whilst also avoiding 
spatial aliasing, thus having no grating lobes above the 
Nyquist frequency of the UCA. Array gain (AG) results 
indicate that the CPCMA is better than the UCA at 
amplifying the desired target signal while suppressing noise 
from other directions for typical speech signal frequencies. 
Compared with a UCA with similar performance and the 
same spatial Nyquist frequency, the CPCMA significantly 
reduces the required number of microphones. Simulations 
also indicate advantages of the CPCMA in speech source 
DOA estimation under high noise and low reverberation, 
especially when there are simultaneous multiple sources. 

Index Terms— Co-prime circular microphone arrays, 
spatial aliasing, array gain, direction of arrival estimation, 
speech processing. 
 

1. INTRODUCTION 
 
Microphone arrays and appropriate signal processing 
algorithms can be applied together to provide solutions for 
numerous problems in acoustics, including estimating the 
incoming direction of the sound source, source separation and 
decreasing the undesirable effects of noise and reverberation 
[1], [2]. Different structures of microphone arrays have been 
designed and the related applications have attracted 
significant research interests, such as sound localisation [3], 
[4], noise reduction [5] and dereverberation [6], [7], [8], [9].  

Recently, the circular differential microphone array 
(CDMA) was proposed, targeting applications such as 3D 
sound recording that required similar responses in all 
directions [10], [11]. The CDMA achieves high directional 
gains and frequency-invariant beampatterns, which is an 
advantage for broadband signals. However, the CDMA also 
amplifies the white noise and encounters the so-called deep-
null problem in the responses of both the directivity factor 

(DF) and white noise gain (WNG) [11]. To deal with it, 
multiple rings of CDMAs were combined to form the 
concentric circular differential microphone array (CCDMA) 
[12]. By designing the robust steerable frequency-invariant 
beampattern, this approach mitigates the deep-null problem. 

To further address the white noise amplification, a larger 
number of microphones and a bigger array spacing are 
preferable [11]. While this may lead to an impractical number 
of microphones to avoid spatial aliasing, a co-prime 
microphone array (CPMA) [13] avoids spatial aliasing by 
interleaving two (much smaller) sub-arrays, where the 
number of microphones of each sub-array are co-prime 
related. Combining the beamforming outputs of each sub-
array achieves improved beampatterns and hence more 
accurate results for applications such as broadband direction 
of arrival (DOA) estimation when compared to a 
conventional ULA with the same number of microphones and 
identical aperture size [14]. For example, the operating 
frequency (spatial Nyquist frequency) of a 16-element ULA 
with an aperture of 0.9 m is approximately 2.9 kHz, compared 
with approximately 12.3 kHz for a CPMA with the same 
number of elements and aperture size (the ULA would need 
72 elements to achieve the same operating frequency as this 
CPMA).  

Wideband DOA estimation for CPMAs includes the use 
of a model-based Bayesian framework to determine the 
number of sound sources [15] and group sparsity to lower the 
computational complexity [16]. Recent work has applied the 
steered response power - phase transform (SRP-PHAT) 
method to CPMA recordings to estimate the DOA of speech 
sources, which achieved more accurate DOA estimates than 
a ULA of the same size [17]. In comparison to this previous 
work, this paper proposes the co-prime circular microphone 
array (CPCMA), which is formed by interleaving two 
uniform circular arrays (UCAs) that are arranged according 
to the co-prime array theory. This design makes use of 
advantages of the CPMA in achieving improved 
beampatterns and array gain without requiring much large 
number of microphones.   

 Section 2 of this paper describes the mathematical 
model for CPCMA recordings and analyses the resulting 
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Fig. 1. An 8-element co-prime circular microphone array 
arrangement 
beampatterns to determine the array gain. Section 3 
introduces the proposed DOA estimation approach, which is 
based on statistical analysis of histograms of DOA estimates 
formed from SRP-PHAT responses derived from the 
CPCMA. Results for different testing scenarios are presented 
in Section 4 with conclusions provided in Section 5. 

 
2. CO-PRIME CIRCULAR MICROPHONE ARRAYS 

AND PERFORMANCE MEASUREMENTS 
 
2.1. Signal Model 
A CPCMA interleaves two sparse uniform circular sub-arrays 
(see Fig. 1). The numbers of microphones in each subarray, 
M and N, are a pair of co-prime numbers, where the only 
positive integer that divides both is one. This paper assumes 
N = M + 1, which minimises the required number of elements 
to construct an expected array aperture [18]. The rightmost   
element is considered as the reference microphone shared by 
the two overlapped sub-arrays, thus forming a CPCMA with 
L = M + N - 1 microphones. Assuming there are K 
uncorrelated narrowband (or wideband) sound sources that 
propagate at the speed of sound (c = 343 m/s), leading to plain 
waves impinging on the CPCMA from different DOAs θi (i = 
1, 2, … , K), the mathematical model of the CPCMA 
recording can be formulated as 

           	𝒚(𝑡) = 	𝒉(𝑡) ∗ 𝒔(𝑡) + 𝒗(𝑡)																								(1) 
where 𝒚(𝑡) = [𝑦/(𝑡),… , 𝑦2(𝑡)]4 is the output of the CPCMA, 
and 𝒔(𝑡) = 	 [𝑠/(𝑡),… , 𝑠6(𝑡)]4 , 𝒉(𝑡) =	 [ℎ/(𝑡),… , ℎ2(𝑡)]4 
and 𝒗(𝑡) = 	 [𝑣/(𝑡),… , 𝑣2(𝑡)]4  represent source signals,  
acoustic impulse responses from the source signals to 
microphones and additive noise, respectively. The noise at 
each microphone is assumed to be uncorrelated and of the 
same power. 

Assuming the reference microphone of the CPCMA is 
configured on the x axis, for plain wave sound sources the 
time delay between the ith microphone and the centre is [11]   

																								𝜏: = 	
𝑟
𝑐 cos

(𝜃 − 𝜑:) , 𝑖 = 1, 2,…	 , 𝐿															(2) 

where r is the radius of the CPCMA, and 
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is the angular location of the ith microphone. In this way, the 
steering vector of length L is 
		𝒅(𝜔, 𝜃) = [𝑒XYZQ ⋯ 𝑒XYZ\]4																																									(4) 
												= [𝑒XY^_`Qabc	(dReQ) ⋯ 𝑒XY^_`Qabc	(dRe\)]4 

where the superscript T represents the transpose operation, 
𝑗 = √−1 is the imaginary unit, and 𝜔 = 2𝜋𝑓 is the angular 
frequency for temporal frequency 𝑓. The wavelength of the 
sound source is 𝜆 = 𝑐/𝑓, and the spacing between the	𝑖/th 
and 𝑖Gth microphone (𝑖/ − 𝑖G = 1) is 
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According to the spatial Nyquist sampling theorem, for 
ULAs, if the inter-element spacing 𝛿t	is greater than half of 
the wavelength 𝜆t , i.e. 𝛿t > 𝜆t	/	2 , there will be spatial 
aliasing. This results in multiple grating lobes in the 
beampattern, which have the same power level as the main 
lobe, thus degrading the performance for applications such as 
DOA estimation. For a UCA, the operating frequency 𝑓vw_yz{, 
below which spatial aliasing will not occur, can be found as 
follows [11]. 

																								𝑓vw_yz{ = 	
_
G|}

= _

~^}c��q �
�}
r
																						(6)  

where 𝑟t and 𝑀t are the radius and number of microphones. 
For a co-prime microphone array, the operating frequency 
can be derived by replacing the number of elements in (6) 
with the product of the number of microphones of each sub-
array and can be approximated as [14] 

																												𝑓vw_z�zS{ ≈	
_

~^c��q �
�∙�r

																									(7)  

2.2. Performance Measures 
For a fixed beamformer, two of the most important 
measurements to evaluate the performance are the 
beampattern and the array gain [19]. The beampattern 
describes the sensitivity of a beamformer to a plane wave 
impinging on the microphone array. For a subarray of the 
CPCMA with I microphones, which is a normal UCA, it is 
formulated as [11] 
															𝑩[𝒘(𝜔), 𝜃] = 𝒘�(𝜔)𝒅(𝜔, 𝜃)																																	(8)                         
																																						= ∑ 𝑊:

∗(𝜔)�
:�/ 𝑒XY^_`Qabc	(dReJ)  

where the superscripts H and * denote the conjugate-
transpose operation and complex conjugation, respectively. 
Additionally, 𝒘(𝜔)  of length I are generally complex 
beamforming weights, which can be expressed as 
																𝒘(𝜔) = 	 [𝑊/(𝜔) 𝑊G(𝜔) ⋯ 𝑊�(𝜔)]4									(9) 
where 𝑊:(𝜔)	(𝑖 = 1, 2,… , 𝐼) is the individual weight applied 
to each microphone signal. This paper assumes equal weights 
although other weights could be derived using existing 
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beamforming techniques, thus the beampattern of the 
CPCMA can be achieved by combining that of the two 
subarrays, which is [14] 
                        𝑩z�zS{ = 𝑩yz{_S × 𝑩𝑼𝑪𝑨_𝑵∗ 																			(10)                           
where 𝑩yz{_S  and 𝑩yz{_L  are the beampatterns of the 
subarrays with M and N microphones, separately. 

Another key measure for microphone arrays is the array 
gain (AG), which is defined as the ratio between the gain to 
the desired signal and the average gain to spatial noises from 
all undesired directions [19]. The AG can be given by   

																							𝐷[𝒘(𝜔)] = |𝑩[𝒘(Y),d�]|K

//�∑ |𝑩[𝒘(Y),d]|K�
																		(11)  

where 𝜃� is the steering angle, and	Θ is the number of discrete 
angles used in calculating the beampattern 𝑩. 
 

3. DOA ESTIMATION USING SRP-PHAT AND 
HISTOGRAM-BASED STOCHASTIC ALGORITHMS  
 
3.1. DOA Estimation Based on SRP-PHAT 
For linear co-prime microphone arrays, it has been shown that 
SRP-PHAT method can be used accurately estimating the 
DOA [17]; here we derive the SRP-PHAT method for the 
CPCMA. The SRP value 𝑃(τ)  at each incidence angle is 
found by summing the generalised cross-correlations (GCC) 
of all combinations of microphone pairs [20]. 

											𝑃(τ) = ∑ ∑ ∫
¢£Q£K(¤)

¥¢£Q£K(¤)¥
¦§
R§ 𝑒XGH¤¨𝑑𝑓2

:K�:Q¦/
2
:Q�/ 				(12)  

where P is the SRP of the microphone array, and 𝜗«Q«K(𝑓) is 
the cross-spectrum given as follows. 
                          𝜗«Q«K(𝑓) = 𝐸[𝑌/(𝑓)𝑌G∗(𝑓)]																					(13)            
where 𝐸[⋅]  calculates the mathematical expectation, and 
𝑌X(𝑓), (𝑗 = 1, 2) are the outputs of the selected microphone 
pairs in the frequency domain. Consequently, the initial DOA 
estimate is 

																																𝜃¯�° = 	arccos³ _¨´µ¶
¥|JQJK¥∙·�

¸																						(14)  

where	𝐹� is the sampling frequency, and 𝜏vw°  is the optimal 
time lag leading to the largest SRP value, which is given by 
																																		𝜏vw° = argmax

𝜏
¼𝑃(𝜏)½																								(15)  

3.2. Result Enhancement Algorithms 
All the DOA estimates for each angle in the steering range 
can form a histogram, the peak of which corresponds to the 
source DOA. However, in noisy, reverberant or multisource 
scenarios, the microphones will receive many signals from 
undesired directions in addition to the direct source path, 
which results in a spreading in the histogram and thus having 
negative impacts on DOA estimation.  

An SRP-adjusted histogram (SAH) approach can 
mitigate these undesired influences [17] by considering the 
energy of the time-frequency instants (similar to other 
weighting methods [21], [22]). The DOA estimation results 

Table 1. Experimental Microphone Array Configurations 

Type of array Number of 
elements Radius (m)  fop  (Hz) 

CPCMA 8 0.12  4567.9 
UCA8 8 0.12 1867.3 
UCA20 20 0.12 4567.9 

Table 2. Experimental Settings 

Sampling frequency (𝐹�) 8 kHz 
Frequency bin number for FFT 200 
Frame duration 25 ms 
Frame overlap 50% 
Number of frames 180 
Azimuthal range 0˚ - 180˚ 
Azimuthal resolution 0.1˚ 
Room dimensions 8 × 9 × 4 𝑚¿ 
Reverberation time (RT60) {0, 200} ms 
Noise Levels (SNRs) {-10, 0, 10, 20, 30, 40} dB 
Ground truth DOAs (S1, S2, S3) {114.8˚, 82.0˚, 69.6˚} 
Source-array distance 7.2 m 
Speed of sound (c) 343 m/s 

having low SRP values are identified as insignificant to the 
DOA histogram, which are removed by using   

     ℎ𝑖𝑠𝑡�ÀÁ¼𝜃X½ = 	 Â
	ℎ𝑖𝑠𝑡¼𝜃X½ − 1,					𝑃¼𝜃X½ < 𝑇
	ℎ𝑖𝑠𝑡¼𝜃X½,													𝑃¼𝜃X½ ≥ 𝑇

							(16)     

where 𝜃X  (0˚ ≤ 𝜃X  ≤ 180˚) represents each possible DOA 
under consideration, ℎ𝑖𝑠𝑡  is the original histogram which 
counts the number of DOA estimates at each	𝜃X, and ℎ𝑖𝑠𝑡�ÀÁ 
is the SRP-adjusted histogram. In addition, 𝑃 is determined 
from (12), and T is a pre-defined energy threshold. 

Although the SAH improves the accuracy of DOA 
estimation by being sensitive to high-energy contributors 
only, there can be discrete angles with higher energy than the 
true sources due to significant levels of noise and 
reverberation, leading to less distinguishable histogram peaks. 
To further increase the accuracy, a stochastic algorithm based 
on kernel density estimation (KDE) [23] is utilised to search 
for the local maximum of the probability density function 
(PDF) of the SAH [17]. The density function used in KDE 
can be expressed as [24] 

																																	𝑓Æ(𝑥) = /
ÈÁ
∑ 𝑈 qÊRÊË

ÌÍ
rÈ

Î�/ 																					(17)  

where U is a pre-defined kernel function, 𝑏𝑤	(𝑏𝑤 > 0) is the 
bandwidth which can smooth the PDF curve, 𝑥Î	(𝑘 =
1, 2,… , 𝑛)  is an evenly distributed sample, and f is the 
distribution of x. The final optimised DOA estimates are 
found as the peaks of this PDF. 

 
4. RESULTS AND DISCUSSION 

4.1 Experimental Setup 
As shown in Table 1 and 2, a CPCMA and two contrastive 
UCAs (UCA8 with 8 elements and UCA20 with 20 elements) 
with the same radius are simulated in a room, and the  
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(c) 

     
                          (a)                                       (b) 

   
                          (c)                                       (d) 

Fig. 2. Beampatterns of the 8-element UCA and CPCMA: (a) UCA 
at 2 kHz, (b) CPCMA at 2 kHz, (c) UCA at 6 kHz, and (d) CPCMA 
at 6 kHz source frequencies. Conditions of simulation: 𝜃� = 90˚.  

 
Fig. 3. Comparison of AGs of the UCAs and CPCMA. Conditions 
of simulation: 𝜃� = 90˚. 
speech recordings are obtained by utilising the IMAGE 
method [25]. Speech utterances are selected from the IEEE 
corpus [26] and the NOIZEUS corpus (clean sources) [27], 
and all sources are of the same distance from the centre of the 
arrays and located in three fixed positions in the far field. 
Recorded signals are transformed to the short-term frequency 
domain by applying the Fast Fourier Transform (FFT) using 
50% overlapped Hamming windowed frames of 25 ms 
duration. DOA estimates are achieved based on SRP-PHAT 
and SAH technique of Section 3.2. One set of three-speech 
mixtures are analysed to find the average DOA estimation 
error using the root mean square error (RMSE), given by 

𝑅𝑀𝑆𝐸 =	Õ/
�
∑ (𝜃Î − 𝜃°^Ö¯)G�
Î�/ , where H is the number of 

estimates, 𝜃Î	(𝑘 = 1, 2,… , 𝐻)  are the DOA estimation 
results, and 𝜃°^Ö¯  are ground truth DOAs. Different levels of 
additive (white) noise and reverberation are also considered.  

4.2 Co-prime Beamformer Performance       
Figure 2 shows plots of beampatterns of the 8-element UCA 
and CPCMA (see Table 1) at 2 kHz and 6 kHz, respectively. 
As can be seen, the CPCMA has a narrower main lobe and 
fewer side lobes than the UCA at both frequencies. In  

 

 
Fig. 4. Comparing SAH-based DOA estimation results for the 8-
element UCA, 20-element UCA and CPCMA under different 
numbers of speech sources and multiple levels of noise and 
reverberation. 
addition, there are no grating lobes and only small side lobes 
in the CPCMA beampatterns, which indicates advantages in 
recording high-frequency components of broadband signals. 

Figure 3 plots AGs of the UCAs, CPCMA and two sub-
arrays of the CPCMA. It can be seen that the AG of the 
CPCMA increases significantly compared to the other four 
UCAs. For example, at 1kHz, there is about a 2.5 dB 
elevation in the gain of the CPCMA.  

Figure 4 considers three types of microphones (see Table 
1), where (a) and (b) shows the accuracy of DOA estimation 
for two and three simultaneous sources in terms of RMSE for 
different levels of additive noise (SNR). Figure 4 (c) 
illustrates single source DOA estimates in anechoic (0 ms) 
and reverberant (RT60=200ms) scenarios for different SNRs.  

5. CONCLUSION 

This paper proposes a co-prime circular microphone array for 
achieving a beampattern with a narrower main lobe and fewer 
side lobes than a conventional UCA with the same radius and  
numbers of microphones, while also avoiding spatial aliasing 
above the spatial Nyquist frequency of the UCA. Compared 
with a UCA with similar performance and the same spatial 
Nyquist frequency, the CPCMA significantly reduces the 
required number of array elements. Simulations also indicate 
advantages of the CPCMA in DOA estimation under high 
noise and low reverberation. 

Future work will investigate the frequency-invariant 
performance of the CPCMA beamformer as well as more 
sophisticated DOA estimation algorithms based on real-
world recordings and applications such as multi-source 
separation and enhancement.  
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