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ABSTRACT

The estimation of the directions-of-arrival (DOAs) of multiple
sound sources is a fundamental stage in acoustic scene analysis.
Many application areas such as robot audition and object-based au-
dio (OBA) broadcast require that DOA estimation is computationally
efficient to allow real-time operation. We propose a new DOA esti-
mation approach based on a sparse representation of recorded sound
fields as a linear combination of spatially bandlimited impulses in
this paper. The proposed algorithm operates on a time-frequency
representation of the spherical harmonic components of the sound
field. We describe a residual energy test that can identify time-
frequency bins with a single active source. DOA estimation is car-
ried out at each time-frequency bin by seeking a single-source dic-
tionary atom which provides the best match to the steered response
function calculated at the selected bins. We demonstrate the accu-
racy of the proposed method via a set of emulations using acoustic
impulse responses measured in a highly reverberant room.

Index Terms— direction-of-arrival estimation, rigid spherical
microphone arrays, orthogonal matching pursuit

1. INTRODUCTION

Sound source localization is essential in a variety of contexts includ-
ing but not limited to object-based audio (OBA), robot audition, and
acoustic surveillance [1]. Most if not all of these problems require
direction-of-arrival (DOA) estimation algorithms that can effectively
and accurately estimate source directions in or close to real-time.

DOA estimation typically involves the processing of micro-
phone array recordings to extract the spatial information. Rigid
spherical microphone arrays (RSMAs) allow DOA estimation using
the spherical harmonic decomposition of the sound field which they
trivially afford. There exist several different DOA estimation meth-
ods proposed for RSMAs with different computational demands and
different levels of accuracy [2]. These methods range from those that
are computationally efficient but have low DOA estimation accuracy
such as pseudointensity vectors (PIV) [3] to those that are computa-
tionally costly while providing high DOA estimation accuracy such
as eigenbeam multiple signal classification (EB-MUSIC) [4] and
eigenbeam estimation of signal parameters via rotational invariance
(EB-ESPRIT) [5]. Direct-path dominance (DPD) test addresses two
of the inherent problems with EB-MUSIC: the necessity to find the
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dimensions of the noise subspace and to reduce the overall compu-
tational cost [6]. Recently proposed methods such as subspace PIV
(SSPIV) [7] and hierarchical grid refinement (HiGRID) [8] provide
a high estimation accuracy at a substantially lower computational
cost. Combination of EB-MUSIC with the latter as a preprocessing
stage for source counting was also shown to work well [9]. Similar
bin selection approaches have also been proposed [10, 11, 12].

We propose a computationally efficient DOA estimation method
which complements a source separation method that we recently
proposed [13]. The method is based on a sparse representation of
the steered response functional of a recorded sound field obtained
using an RSMA. The method we propose uses the residual energy
test (RENT) as a preprocessing stage to select time-frequency bins
containing only a single sound source. RENT involves finding the
best fitting atom from an overcomplete dictionary to the steered re-
sponse functional (SRP) vector and using the ratio of the energies
of the residual vector and the SRP vector as a direct path test. For
bins that pass RENT, the DOA is identified and registered as the in-
dex of the best fitting atom. We then employ the histogram of DOA
estimates to estimate the source DOAs.

This paper is organised as follows: Sec. 2 presents background
information. We propose the new, dictionary-based DOA estimation
method in Sec. 3. Sec. 4 presents an assessment of the proposed
method’s DOA estimation accuracy. Finally, Sec. 5 concludes the
paper.

2. BACKGROUND

2.1. Spherical Harmonic Decomposition

A pressure distribution on a spherical surface can be represented as
a linear combination of spherical harmonic functions, such that:

p(k, r,Ω) =

∞∑
n=0

n∑
m=−n

pnm(kr)Y m
n (Ω) (1)

using the coefficients:

pnm(kr) =

∫∫
Ω∈S

f(Ω)[Y m
n (Ω)]∗dΩ (2)

where Y m
n (Ω) are the spherical harmonic functions of degree n ∈ N

and order m ∈ Z, Ω = (θ, φ) is a direction on the unit sphere, S,
with θ and φ, the elevation and azimuth angles, respectively and
pnm(kr) are the spherical harmonic decomposition (SHD) coeffi-
cients with k = 2πf/c being the wave number and r being the
radius. The compact representation afforded by SHD facilitates its
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use in many different fields of physics and signal processing, and in
particular in the analysis of acoustic scenes [14].

2.2. Rigid Spherical Microphone Arrays

Rigid spherical microphone arrays (RSMAs) are particularly use-
ful for obtaining the spherical harmonic decompositions (SHD) of
sound fields subject to an order limitation dictated by the number of
microphone elements in the array. For an RSMA withQ ≥ (N+1)2

elements positioned at {Ωq}q=1···Q, the SHD coefficients up to a
degree N can be calculated using a numerical quadrature. Defining
pnm = [p00(kr) p1−1(kr) p10(kr) p11(kr) · · · pNN (kr)]T as the
vector containing the SHD coefficients, W = diag{wq}q=1···Q as
the diagonal matrix of quadrature weights, p = [p1 p2 · · · pQ]T as
the Q× 1 vector containing the and Y as the L× (N + 1)2 matrix
with the l-th row given by:

y(Ωq) = [Y 0
0 (Ωq), Y −1

1 (Ωq), Y 0
1 (Ωq), ..., Y N

N (Ωq)], (3)

the SHD coefficients can be calculated as:

pnm = YHWp. (4)

Note that discrete sampling limits the maximum order of spherical
harmonic coefficients to N and the SHD coefficients obtained this
way will converge to the true SHD coefficients only if the sampling
scheme satisfies the discrete orthonormality condition [15].

While the expressions above are given in wave number domain,
the assumption is made here that they also hold for a time-frequency
representation of the signals.

2.3. Steered Response Functional

An important advantage of SHD is that it allows decoupling the
frequency and direction dependent components of monochromatic
plane waves. The SHD coefficients due to monochromatic plane
wave incident from the direction Ωs on a rigid sphere of radius ra is
given as:

pnm(k,Ωs) = 4πinbn(kra)[Y m
n (Ωs)]∗ (5)

with the frequency-dependent component due to the acoustic scat-
tering from the sphere given as:

bn(kr) = jn(kr)− j
′
n(kra)

h
(2)′
n (kra)

h(2)
n (kr). (6)

where jn(·), h(2)
n (·), and h(2)′

n (·) are, the spherical Bessel function
of the first kind, spherical Hankel function of the second kind and
its derivative with respect to its argument, respectively. Sound fields
can be expressed as a combination of multiple plane waves. Let us
assume that the sound field consists of S plane waves. The SHD
coefficients for such a sound field are:

pnm(k) =

S∑
s=1

αspnm(k,Ωs) (7)

where αs ∈ C is the complex valued amplitude of each plane wave
that constitutes the sound field. Simplification by normalizing the
SHD coefficients allows eliminating the frequency dependence as
well as the order-dependent quadrature phase shift, resulting in:

ỹH = B−1Pa (8)

where a = [α1 α2 · · ·αS ]T is the column vector of complex-valued
amplitudes, B is a (N + 1)2× (N + 1)2 diagonal matrix containing
the terms 4πinbn(kra) in its diagonal and ỹ = [ỹ00 ỹ1−1 · · · ỹNN ]
with:

ỹnm =

S∑
s=1

α∗sY
m
n (Ωs). (9)

and P is a (N + 1)2 × S matrix consisting of columns of the form
ps = [p00(k,Ω1) p1−1(k,Ω1) · · · pNN (k,Ω1)]T .

A maximally directive steered beam in a given direction Ωd can
be formed multiplying ỹH with the steering vector y(Ωd) such that:

s(Ωd) = y(Ωd)ỹH = y(Ωd)B−1Pa (10)

=

S∑
s=1

N∑
n=0

n∑
m=−n

αsY
m
n (Ωd)Y m

n (Ωs)∗.

More generally, a steered response functional (SRF) vector can
be obtained by calculating the steered response in D discrete direc-
tions such that:

s = Ysỹ
H (11)

where Ys is aD× (N +1)2 matrix whose rows consist of the steer-
ing vectors {y(Ωd)}d=1···D . Note that the steered response power
(SRP) map at the same steering directions can be obtained from the
SRF vector as diag{ssH} and would have positive, real-valued terms
as opposed to the SRF vector which will, in general, have complex-
valued terms.

3. TIME-FREQUENCY BIN SELECTION AND DOA
ESTIMATION VIA RENT

The method we propose consists of two stages: (1) joint time-
frequency bin selection and DOA estimation, and (2) clustering for
multiple DOA estimation. These stages are described below.

3.1. Residual Energy Test (RENT)

It may be shown via the spherical harmonic addition theorem [16]
that:

λN (Ω,Ωs) =

N∑
n=0

n∑
m=−n

Y m
n (Ω)Y m

n (Ωs)∗ (12)

=
PN+1(cos Θ)− PN (cos Θ)

P1(cos Θ)− P0(cos Θ)

where Θ is the angle between the unit vectors in directions Ω and Ωs.
Note that limN→∞ λN (Ω,Ωs) = δ(Ω−Ωs), an impulse at Ω = Ωs,
and also that λN (Ω,Ωs) is a spatially bandlimited pulse localized at
Ω = Ωs. Henceforth we will call λN (Ω,Ωs) as a Legendre pulse of
order N . We can express steered response given in (10) as a linear
combination of Legendre pulses such that:

s(Ωd) =

S∑
s=1

αsλN (Ωd,Ωs). (13)

Using the expression in (13) it is possible to express the SRF
sampled at D discrete directions n matrix form as:

s = LDSaS (14)

where LDS ∈ RD×S is a matrix with the columns given as Λs =
[λ(Ω1,Ωs) λ(Ω2,Ωs) · · ·λ(ΩD,Ωs)]T , and a ∈ CS×1 is the col-
umn vector containing complex amplitudes. Note that while s can be
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trivially calculated, usually neither Ωs nor S is known. Note also that
while S can potentially be very large in a reverberant environment
with a strong diffuse component, only a few complex coefficients,
αs, will have a large magnitude.

A sparse approximation, sG = LDGaG using a smaller num-
ber of G terms is possible. The optimal selection of G and {Ωg}
corresponds to the minimization of the approximation error:

ε = ‖s− sG‖2 + T 2S (15)

where T is a Lagrange multiplier which penalizes the number of
terms used in the approximation. While the problem of finding the
best G-term representation is NP-hard [17], satisfactory solutions
can be obtained using computationally tractable algorithms such as
orthogonal matching pursuit (OMP) [18].

We propose the residual energy test (RENT) as a time-frequency
bin selection mechanism to identify the bins that contain a single
source. RENT is based on a single-iteration OMP used to jointly
select the time-frequency bins and to estimate source DOAs. The
vector to be approximated is the SRF. The employed dictionary con-
sists of Legendre pulses sampled at pixel centroids of a HEALPix
grid [19] with the centre directions also corresponding to pixel cen-
troids from a HEALPix grid of the same or higher resolution. Let
us express the centroid of a the pixel k from the HEALPix grid at
level K as ΩK,p where the number of pixels that completely cover
the unit sphere at the same level is P = 12 × 22K . The centre di-
rection of the Legendre pulses can be sampled from the HEALpix
grid with the same or higher resolution K̃ ≥ K resulting in an over-
complete dictionary consisting of the set of P̃ = 12 × 22K atoms
Φ = {Λp̃ = [Λ(Ω1,Ωp̃) · · ·Λ(ΩP ,Ωp̃)]T }p̃=1···P̃ . RENT identi-
fies time-frequency bins with a single source and estimates its DOA
using the following steps:

1. Obtain the windowed Fourier transform {Pq(τ, κ)}q=1···Q of
microphone array signals, where κ is the frequency index and τ
is the time index.

2. Obtain the SHD coefficients for each time-frequency bin, (τ, κ),
using (4)

3. For each time-frequency bin, calculate the SRF vector, s(τ, κ) ∈
RP×1 at a finite number of P directions quasi-uniformly sam-
pled on the HEALPix grid at the resolution level K.

4. Find the dictionary atom which best matches the SRF vector such
that:

Λp̃ = max
Λ∈Φ
〈Λ, s(τ, κ)〉 (16)

5. Calculate the residual error vector orthogonal to the SRF vector:

r(τ, κ) = Rp̃ s(τ, κ) (17)

=

[
I−Λp̃

(
ΛT

p̃ Λp̃

)−1

ΛT
p̃

]
s(τ, κ).

Note that Rp̃ can be calculated offline for each atom in the dic-
tionary and stored.

6. Calculate ones’ complement of the ratio of the residual energy
and the total energy of the SRF vector, such that:

R(τ, κ) = 1− ‖r(τ, κ)‖2

‖s(τ, κ)‖2 (18)

where 0 < R(τ, κ) < 1. Notice that for a single plane wave
in acoustic free field s(τ, κ) can be represented by a single atom
and the energy of the residual vector would be zero resulting in
R(τ, κ) = 1 indicating that R(τ, κ) is close to unity when the
time-frequency bin contains a single dominant source.

0 897

Fig. 1. DOA histogram of four sound sources located at
(118◦, 116◦), (68◦, 90◦), (90◦, 0◦), and (105◦, 243◦). Mollweide
projection is used in the figure.

7. Identify the set of time-frequency bins for which (18) is greater
than a selected threshold, such that:

SRENT = {(τ, κ) : R(τ, κ) > THR} (19)

8. Register the index of dictionary atom, p̃, identified for each time-
frequency bin found in (16) as the DOA estimate for that time-
frequency bin.

After the DOA estimates are obtained for each time-frequency
bin that passes RENT, a histogram is formed whose bin centers are
aligned with pixel centroids of the employed HEALPix grid.

3.2. Multiple DOA Estimation via Agglomerative Histogram
Clustering

RENT is followed by clustering the resulting histogram to obtain
the DOA estimates. The main assumption in the development of
the histogram clustering approach herein is that sources are spatially
separated sufficiently well so that clusters can be identified based on
their contiguity. While the proposed clustering approach is similar
to neighboring nodes labeling (NNL) approach presented in [8], it is
computationally more effective.

The DOA histogram contains the number of occurrences
(i.e. counts) that a given pixel on the HEALPix grid was iden-
tified as the DOA. (see Fig. 1) The pixels are first sorted into a list
according to counts. The pixel with the highest count is removed
from the sorted list of selected pixels and is defined as the first
cluster. The neighborhood of the cluster is defined as the set of
pixels surrounding it. The next pixel in the sorted list is selected and
removed from the list. If the selected pixel corresponds to an ele-
ment already in the cluster, the count of the corresponding element
in the cluster is incremented. If the pixel is in the neighborhood of
the first cluster, it is added to the cluster and the neighborhood of
the cluster is expanded to account for the new pixel. If it is not in
the neighborhood, a new cluster is formed. For each pixel from the
sorted list, the neighborhoods of all existing clusters are checked
and if the new pixel is not in one of the existing clusters or their
neighborhoods, a new cluster is formed. The iteration continues
until the list of selected pixels is exhausted. The identified clusters
provide both source count and DOAs.

4. PERFORMANCE EVALUATION

We simulated scenarios using up to 6 concurrently active sources
by convolving real acoustic impulse measurements (AIRs) with ane-
choic sound samples. The first four sources (S1-S4) were 4s-long
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Fig. 2. Heatmap showing the DOA estimation errors for a single
source. Eigenmike is positioned at the center. The single source that
cannot be localized is denoted by a hatched pattern.

violin tracks from the anechoic recordings of Mahlers Symphony
Nr. 1, fourth movement [20]. The remaining two sources (S5-S6)
were female and male anechoic speech recordings [21]. The atoms
in the dictionary used in RENT are Legendre pulses sampled on a
HEALPix grid of resolution level 3 resulting in 768 atoms of size
768× 1. This corresponds to 7.33◦ resolution. The frequency range
selected for the analysis is between 480 Hz and 3750 Hz. Window
size and overlap are 2048 and 50% respectively. Sampling rate is
selected as 48 kHZ.

Multichannel acoustic impulse responses (AIRs) recorded using
an RSMA (Eigenmike em32) in an empty classroom (T60 ≈ 1.12s)
were used in the simulations. The set of AIRs were measured on a
set of rectilinear grid points in a 3 m×3 m×1.2 m volume with 0.5
m separation in the x and y directions and 0.3 m separation in the z
direction. Eigenmike was positioned at the center of the grid.

We simulated RSMA recordings using all AIRs in the horizon-
tal plane in order to characterize its performance when only a single
source is present. An anechoic violin signal was used while ob-
taining the simulated recordings. Fig. 2 shows the DOA estimation
errors for the 48 directions. The maximum error was 5.95◦. RENT
could not localize one of the sources as the error was greater than
10◦. The figure also shows that better accuracy is possible in the
vertical axial direction which may be due to the perfect alignment of
the source and dictionary atom directions.

For scenarios involving multiple sources, AIRs were randomly
selected from the dataset subject only to the constraint that the angu-
lar separation between any two sources is greater than π/10. Ran-
dom simulations for each source count was repeated 10 times. Fig. 3
shows the results for different number of sources. It may be observed
that the average error is always less than 5◦ and that the error does
not substantially depend on the number of emulated sources. Table 1
shows the descriptive statistics of the results. The last row shows the
average number of identified sources. It may be observed that up
to 4 sources, RENT was able to identify all sources correctly. For
the five source scenario, RENT missed one source each in 3 out of
10 scenarios. For the six source scenario, RENT missed one source
each in 2 out of 10 scenarios. No spurious sources were identified.

We also compared RENT with other state of the art methods:
HiGRID [8], SSPIV [7] and DPD-MUSIC [6]. The test involved
simulating four sources at diagonal positions at a distance of 1.41

8
7
6
5
4
3
2
1
0

1 2 3 4 5 6

Fig. 3. DOA estimation errors for different number of sources.
The first four sources are violins playing in unison and the last two
sources are anechoic speech signals. The dotted triangles indicate
mean ± standard deviation points, respectively.

Number of Sources
1 2 3 4 5 6

Mean 3.92◦ 3.13◦ 2.72◦ 3.36◦ 3.38◦ 3.63◦

Min. 1.55◦ 0.02◦ 0.02◦ 0.02◦ 0.02◦ 0.02◦

Max. 5.62◦ 6.98◦ 7.5◦ 6.42◦ 8.22◦ 7.5◦

Std. Dev. 1.71◦ 2.05◦ 2.11◦ 2.13◦ 2.20◦ 1.95◦

Avg. Src. 1 2 3 4 4.7 5.8

Table 1. Descriptive statistics of the DOA estimation experiments.

Source HiGRID SSPIV DPD-MUSIC RENT
1 1.15◦ 6.6◦ 3.45◦ 3.38◦

2 1.34◦ 4.11◦ 4.21◦ 3.38◦

3 0.7◦ 2.31◦ 2.28◦ 5.62◦

4 1.18◦ 7.2◦ 1.12◦ 3.38◦

Avg. 1.09◦ 5.06◦ 2.77◦ 3.94◦

Table 2. DOA estimation errors of RENT in comparison with the
state of the art DOA estimation methods

m. The simulated sources were positioned in the horizontal plane at
the directions of (θ, φ) = (90◦, 45◦), (90◦, 135◦), (90◦, 225◦) and,
(90◦, 315◦). The results shown in Table 2 indicate that RENT pro-
vides worse DOA estimations than HiGRID and DPD-MUSIC, but
better DOA estimations than SSPIV for the tested condition. How-
ever, since the computational cost of RENT is lower than both Hi-
GRID and DPD-MUSIC, it provides an alternative to those methods.

5. CONCLUSIONS

Direct path features are used to select time-frequency bins con-
taining substantial contributions from a single source since reliable
DOA estimations can be obtained from these bins. The most popu-
lar method for selecting bins this way is the direct path dominance
(DPD) test which involves calculating the singular value decom-
position (SVD) of the time-frequency averaged spatial correlation
matrix and is thus computationally costly. We proposed an alter-
native direct path test and DOA estimation method called residual
energy test (RENT) based on orthogonal matching pursuit (OMP).
An evaluation of its performance in terms of the DOA estimation ac-
curacy it provides revealed that RENT is both robust to a high level
of reverberation and provides DOA estimation accuracy comparable
to state of the art. We found that the running time for RENT is more
than an order of magnitude less than the state of the art. A thorough
evaluation of its computational complexity is left as future work.
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