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ABSTRACT

In this paper, we propose a method of estimating the sampling
frequency mismatch among asynchronous recording devices, even
when the sources sometimes move. For a spatially stationary source,
there is a method of estimating the sampling frequency mismatch,
which appears in the drift of the time difference among the observed
digitized signals. When the source moves, however, the change of
its location also affects the drift, and the method fails to estimate
the mismatch. In the meantime, looking at the practical recording
situations, sources sometimes move but sometimes do not move.
That is, there should be a set of time frames in which we can as-
sume the spatial stationarity of sources, and to which we are still
able to apply the sampling frequency mismatch estimation method.
Based on this idea, our proposed method first detects a set of time
frames where we can assume the spatial stationary by clustering the
time frames using the covariance matrix of each recording device,
and then estimates the mismatch by using the detected stationary
time frames. Using real recordings with several IC recorders, we
show that the proposed method can estimate the sampling frequency
mismatch accurately even when the sources sometimes move.

Index Terms— Asynchronous microphones, distributed micro-
phones, synchronization, moving sources, spatial stationarity

1. INTRODUCTION

In the multi-channel speech enhancement research field, many
successful speech enhancement techniques with a synchronized
microphone array have been proposed, e.g., [1–5]. However, it is
sometimes difficult to obtain synchronous multi-channel recordings
because all the microphones must be connected to the same analog-
to-digital converter, which may be expensive and/or impractical in
many applications. In contrast, it is easy to obtain asynchronous
multi-channel recordings owing to the widespread availability of
voice recording devices including smartphones. However, it then
becomes difficult to apply beamforming approaches directly to such
asynchronous recordings, because those techniques are severely af-
fected by the synchronization misalignment including the sampling
frequency mismatch and the difference in the recording start time
among recording devices.

Signal processing for asynchronous distributed microphones has
been studied in recent years [6–17], and it has been reported that
well-established microphone array techniques can be employed if
recordings with distributed microphones are synchronized success-
fully [6–9, 13–19]. However, most of these papers addressed the
sampling frequency mismatch compensation only for fixed sound

sources, which do not move during recording, and the sampling fre-
quency mismatch estimation and compensation for moving-source
recordings still remains as an open problem. If the sampling fre-
quency mismatch is precisely estimated, we can compensate it with,
e.g., recently proposed mismatch compensation methods [20, 21].

In this paper, we focus on a blind synchronization method pro-
posed by Miyabe et al. [8, 13] which has been proposed for a fixed
source, and we propose a way to apply it to a case where sources
sometimes move. When a source does not move, the sampling
mismatch between two recording devices causes a drift of the time
difference among their observed digitized signals. This method as-
sumes this drift to be constant within each time frame but to vary
proportionally to the time frame index, and estimates the sampling
frequency mismatch in the short time Fourier transform (STFT) do-
main. This method also assumes the spatial stationarity of sound
sources and works reasonably well when the source locations are
fixed during the recording [8, 13]. If the source moves, however,
this movement also causes a drift of the time difference among the
recordings, making it difficult to distinguish between the sampling
frequency mismatch and the change in the source location. As a re-
sult, this method cannot estimate the sampling frequency mismatch
for moving sources.

Because the conventional method [8,13] assumes the spatial sta-
tionarity of the sources, even if sources sometimes move, we may
still be able to employ it if we can obtain the time frames where sta-
tionarity assumption is hold. Looking at the practical recordings,
sources sometimes move but sometimes do not move (e.g., speakers
at a conversation at a meeting), and there should be the time frames
where the spatial stationarity assumption is hold. Considering such a
situation in real recordings, we first attempt to detect the time frames
where the source can be assumed to be stationary. Here, we assume
that each recording device has at least two channels, and we pro-
pose a method for clustering the time frames by assuming that the
covariance matrix of each recording device has stationary periods.
It will be shown that, by applying the conventional synchronization
method to the detected stationary time frames, we can estimate the
sampling frequency mismatch among devices even under the exis-
tence of source movements during recording.

2. PROBLEM DESCRIPTION

Suppose we have two stereo recording devices with slightly dif-
ferent sampling frequencies. Let x1[t] = [x1L[t], x1R[t]]

T and
x2[t] = [x2L[t], x2R[t]]

T be their continuous time domain obser-
vations at the left and right channels. For simple notation, let x1B
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denote x1L or x1R, and define x2B similarly. Assuming that the
sampling frequency of each device is time-invariant, their discretized
signals x1B(t) and x2B(t) (B=L or R) are modeled as follows.

x1B(t) = x1B

[
t

fs

]
, (1)

x2B(t) = x2B

[
t

(1 + ϵ)fs
+ T

]
, (2)

where T and ϵ are the parameters that represent the offset time (=
difference between the recording start times) and the sampling fre-
quency mismatch between the two devices, respectively.

The objective of this paper is to estimate the sampling frequency
mismatch parameter ϵ from the two stereo recordings x1B(t) and
x2B(t), even in a dynamic recording condition where sound sources
may move. Here, we assume that the offset time T has already been
compensated by, e.g., finding the peak of the cross-correlation be-
tween x1B(t) and x2B(t) [13].

3. BLIND SYNCHRONIZATION: REVIEW

To estimate ϵ, in this paper, we employ the blind synchronization
technique proposed in [8, 13]. Here, we review this technique in
considering to apply it to two stereo devices.

First, we obtain the STFT domain representation of x2B(t) as

X2B(f, n) =

L−1∑
l=0

w(l)x2B(l + n− L

2
) exp

(
− ȷ2πfl

L

)
, (3)

where w(l) is a window function of the length L, f is the discrete
frequency index, n is the central sample of the analysis time frame,
and ȷ =

√
−1. Then, approximating the time difference between

channels caused by the sampling frequency mismatch ϵ is constant
within a time frame, the sampling frequency mismatch is compen-
sated by a linear phase shift in the STFT domain as follows:

X̂2B(f, n; ϵ) = X2B(f, n) exp

(
ȷ2πfnϵ

L

)
. (4)

If all the sources do not move and stationary, the synchronized
multi-channel observation

Y(f, n; ϵ) = [X1L(f, n), X1R(f, n), X̂2L(f, n; ϵ), X̂2R(f, n; ϵ)]
T

(5)
is also regarded as being stationary. Therefore, we assume that
the compensated observation vector Y(f, n; ϵ) with an accurate ϵ
follows the zero-mean multivariate normal distribution. The log-
likelihood function is given by

J(ϵ) =
∑
f,n

[− log det(πVY(f))

− YH(f, n; ϵ)V−1
Y (f)Y(f, n; ϵ)

]
(6)

= −|∀n|
∑
f

[D(1 + log π) + log detVY(f)], (7)

where VY(f) =
∑

n Y(f, n; ϵ)YH(f, n; ϵ)/|∀n| is the maximum
likelihood estimation of the spatial covariance matrix, D is the di-
mension of Y (therefore D = 4 here), and |∀n| is the number of
frames. The sampling frequency mismatch ϵ is estimated by maxi-
mizing this log-likelihood function. Since the values of estimation
of ϵ that maximizes the likelihood cannot be obtained analytically,
we use a golden-section search approach [8, 13].
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(a) ϵ̂=18.5 (ppm) (b) ϵ̂=41.0 (ppm)

Fig. 1. Example plots of J for (a) a fixed source and (b) a mov-
ing source (Dynamic 1 scenario in Sec. 5.1). The oracle is ϵo=18.4
(ppm), and the estimated (ϵ̂) values of ϵ are shown under the plots.

This approach assumes the spatial stationarity of the sources,
and it works very well for a fixed source. Figure 1 (a) shows an ex-
ample plot of J for a fixed source. We can see that the log-likelihood
J is monomodal and the method can accurately estimate ϵ values.
On the other hand, when the source moves, the assumption of spa-
tial stationarity no longer holds. Therefore, the shape of the log-
likelihood function collapses (Fig. 1 (b)), and we cannot accurately
estimate ϵ value. This is the motivation of this paper.

4. PROPOSED APPROACH TO APPLY BLIND
SYNCHRONIZATION TO DYNAMIC CONDITIONS

In this section, we explain how to handle dynamic cases. We first
find a set of time frames for which we can assume spatial stationarity,
and then estimate ϵ by using only these found time frames.

Let Xd(f, n) = [XdL(f, n) XdR(f, n)]
T be the stereo ob-

servation of the dth microphone (d = 1 or 2) at (f, n) time fre-
quency bin. We classify each time frame into several classes such
that Xd(f, n) can be more spatially stationary in each class. It is ex-
pected that each class would represent for example, a fixed source, a
stationary mixture of fixed sources, a source activity when a moving
source is located at a certain position, background noise, and so on.
To obtain such classes, we assume that Xd(f, n) follows a complex
multivariate distribution with zero mean and a spatial covariance ma-
trix Vdk(f) depending on the class. Then, the log-likelihood when
a time frame n belongs to a class k can be written as

Lc(n; k) =
∑
d

∑
f

[− log det(πVdk(f))

−XH
d (f, n)V−1

dk (f)Xd(f, n)]. (8)

Equation (8) is similar to eq.(6), however, eq.(8) consists of only the
covariance matrices of the stereo observation at each device. There-
fore, the sampling frequency mismatch between the devices does not
affect eq.(8).

Thus, we have the objective function

L =
∑
k

∑
n∈Ck

Lc(n; k), (9)

where Ck represents the set of indices of time frames that belong to
the class k. The objective function in terms of Vdk and Ck can be
increased and ideally maximized by applying the following update
rules iteratively.
Update of spatial covariance matrix of each class

Vdk(f) =
1

|∀Ck|
∑
n∈Ck

Xd(f, n)X
H
d (f, n) (10)

Update of each class
Ck = {n | L(n; k) ≥ L(n; k′) ∀k′ ̸= k} (11)
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Fig. 2. Recording setup.

After the convergence of this iteration, we choose the most sta-
tionary class k by the maximum likelihood criterion as

k = arg max
k′

∑
n∈Ck′

Lc(n; k
′). (12)

Then, by maximizing eq.(6) over not all the time frames but only
the time frames n ∈ Ck, we can estimate the sampling frequency
mismatch ϵ even under a dynamic source condition.

5. EXPERIMENTS

5.1. Recording setup
Our recording was conducted in a small office with reverberation
time of 350 ms. There was low level of room noise from, e.g., the
personal computers and air conditioners. As the recording devices,
we utilized three types of IC recorders, Panasonic RR-X360 (“pana”
for short), Sony ICD-PX470F (“sony47”), and Sony ICD-UX560F
(“sony56”). We used six IC recorders in total, and their positions
and orientations are shown in Fig. 2. The sampling rate was 44,100
Hz.

We recorded speech signals for following three scenarios:

1. Fixed scenario: One speaker was seated and spoke about 1
minute at seat s(s = 1, · · · , 6) (see Fig. 2).

2. Dynamic 1 scenario: One speaker spoke while walking. The
speaker followed one of the following one way routes: A→B,
B→A, C→D, or D→C (see Fig. 2).

3. Dynamic 2 scenario: One speaker spoke while walking. The
speaker made two round-trips of one of the following routes:
A→B→A→B→A, B→A→B→A→B, C→D→C→D→C
or D→C→D→C→D (see Fig. 2).

We employed one male speaker and one female speaker for all the
recording scenarios.

5.2. Experimental conditions

We estimated ϵ for each scenario and each IC recorder, and com-
pared the estimated values with the oracle ϵ values. To estimate the
oracle values of ϵ0 for each IC recorder, we used a time marking at
the start and end timings of the recordings. For the time marking,
we played a chirp signal (a time-stretched pulse of 0–7 kHz with the
duration of 1 sec.). From the number of samples between the start
and end points, we can obtain the oracle ϵ. The reference device x1

in this paper was sony56 1⃝.

We compared the estimation error for the conventional method
with that for the proposed methods. As the conventional method,
we used the entire data for each recording, and applied the original
blind synchronization approach [8,13]. As the proposed method, we
used the clustering method described in Sec. 4, where the number of
classes was 51. For both methods, the frame length and frame shift
were 4096 and 2048, respectively. We used the following evaluation
measures:

• Average value of the estimated ϵ for each IC recorder,
• Absolute error a defined by a = |ϵ ***−ϵ oracle|, where ***

denotes conv (conventional) or prop (proposed). We counted
the cases where the error a > 1 (ppm) for each scenario.

5.3. Results
First, we show the clustering result with our proposed method
for the Fixed and Dynamic 1 scenarios. Figures 3 and 4 show
(0) the clustering result of the time frames in each recording,
and (i)–(v) the log-likelihood function J(ϵ) in the blind syn-
chronization in each class. In the Fixed scenario, Fig. 3 (0),
the second (light blue) and third (light green) clusters corre-
spond to the noise and voice segments, respectively. The clus-
tering log-likelihood for these five classes was

∑
n∈Ck

Lc(n; k) =

−7, 4e5, 3.7e6,−1.3e6,−8.2e5,−6.1e5 (k = 1, · · · , 5), and the
second class, which had the maximum likelihood, was selected in
this case. From the shape of the likelihood functions shown in Figs. 3
(i)–(v), it appears that we can obtain reasonable ϵ values from all
classes for the Fixed scenario. Actually, for the oracle ϵ0 = −3.92
ppm, the estimated ϵ values for classes 1–5 were -3.62, -3.73, -3.61,
-3.64 and -2.97 (ppm), respectively. Next, we move to the dynamic
scenario, which is shown in Fig. 4. From Fig. 4 (0), we can see that
the fifth cluster (yellow) corresponded to the noise period, and no
class corresponded to the voice segment due to the movement of
the source. The clustering log-likelihood for these five classes was∑

n∈Ck
Lc(n; k) = −1.5e5, 1.9e4,−2.1e5,−1.4e5, 5.7e5 (k =

1, · · · , 5), and the fifth class, which has the maximum likelihood,
was selected in this case. The estimated ϵ from the fifth class was
-3.90 ppm, where the oracle was ϵ0 = −3.92 ppm. It might be
worth mentioning that our proposed approach selected quite often
the noise class, that provided accurate estimation of ϵ as discussed
in the next paragraph. Using the noise regions might be reason-
able practically when the source is always moving, because we can
expect spatially stationary noise sources in real recordings.

Tables 1–3 show the summaries of the evaluation results for each
IC recorder for the Fixed, Dynamic 1, and Dynamic 2 scenarios, re-
spectively. In the tables, * ora, * conv, and * prop denote the values
for the oracle, conventional method, and proposed method, respec-
tively. With the conventional method, the ϵ values were estimated
accurately for the Fixed scenario (Table 1). However, for the dy-
namic scenarios, the conventional method could no longer estimate
the correct ϵ values, especially for the Dynamic 1 scenario. On the
other hand, the proposed method almost always worked reasonably
well for both Fixed and Dynamic conditions. The estimation error
of the Dynamic 2 scenario is almost the same as that of the Fixed
scenario, and even for the Dynamic 1 scenario, the proposed method
estimated ϵ values with small errors.

6. CONCLUSION

In this paper, we proposed a method of estimating the sampling
frequency mismatch among asynchronous recording devices, even

1We also tried 3 and 4 classes, and confirmed that they also worked.
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Fig. 3. Examples of (0) Clustering result, and (i-v)
their log-likelihood J(ϵ) for a Fixed scenario. The log-
likelihood for clustering of time frames

∑
n∈Ck

Lc(n; k) =
−7.4e5,+3.7e6,−1.3e6,−8.2e5,−6.1e5 (class 2 was selected).

when the sources sometimes move. The proposed method first finds
the stationary time frames by clustering the time frames using the co-
variance matrix of each recording device, and then applies the blind
synchronization to the found time frames to estimate the sampling
frequency mismatch. We confirmed that the proposed clustering
method can find the stationary time frames required for blind syn-
chronization, and that the proposed method can estimate the sam-
pling frequency mismatch accurately. Our future work includes the
application of our proposed method to asynchronous distributed mi-
crophone array processing, such as, speech enhancement or speech
separation with multiple asynchronous recording devices.
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Table 1. Estimated ϵ and absolute errors for Fixed source scenario,
ICrecorder pana 1⃝ pana 2⃝ sony47 1⃝ sony47 2⃝ sony56 2⃝
ϵ ora -3.925 18.424 11.400 -0.540 -1.109
ϵ conv -4.006 18.500 11.449 -0.518 -1.025
ϵ prop -3.907 18.463 11.364 -0.523 -1.154
a conv 0/12 0/12 0/12 1/12 1/12
a prop 0/12 0/12 0/12 0/12 0/12
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Fig. 4. Examples of (0) Clustering result, and (i-v) their
log-likelihood J(ϵ) for a Dynamic 1 scenario. The log-
likelihood for clustering of time frames

∑
n∈Ck

Lc(n; k) =
−1.5e5,+1.9e4,−2.1e5,−1.4e5,+5.7e5 (class 5 was selected).

Table 2. Estimated ϵ and absolute errors for Dynamic 1 scenario,
ICrecorder pana 1⃝ pana 2⃝ sony47 1⃝ sony47 2⃝ sony56 2⃝
ϵ ora -3.925 18.424 11.400 -0.540 -1.109
ϵ conv 13.443 -10.111 9.548 3.689 -5.539
ϵ prop -3.985 18.221 10.736 -0.356 -1.231
a conv 6/8 8/8 8/8 8/8 8/8
a prop 0/8 0/8 1/8 0/8 0/8

Table 3. Estimated ϵ and absolute errors for Dynamic 2 scenario,
ICrecorder pana 1⃝ pana 2⃝ sony47 1⃝ sony47 2⃝ sony56 2⃝
ϵ ora -4.586 18.159 11.224 -0.661 -1.334
ϵ conv 2.822 19.334 9.643 -0.905 -3.703
ϵ prop -4.598 18.024 11.201 -0.702 -1.281
a conv 2/4 3/4 2/4 1/4 1/4
a prop 0/4 0/4 0/4 0/4 0/4
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