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ABSTRACT

We propose a novel beamformer design method that exploits prob-
abilistic assumptions on auxiliary variables derived from filters and
observed signals. Many conventional beamformer design methods
can be understood in the context of optimization problems for some
probabilistic cost functions. However, the class of cost functions
used with these methods is quite limited to reflect multiple pieces
of information and our demands on the filter, such as the sparsity
assumption of the source signals and the low-latency constraint of
the filter. We propose a method to design cost functions that in-
corporate multiple probabilistic assumptions. The assumptions are
expressed as the sum of many convex terms, and every term has dif-
ferent auxiliary variables that are linearly constrained. Such cost
functions can be optimized by iteratively optimizing with regard to
each term alternately. This method enables us to more arbitrarily
tune the beamformer. We conducted numerical simulations showing
that our method effectively improves the performance from multiple
perspectives.

Index Terms— beamforming, array signal processing, proba-
bilistic modeling, convex optimization, alternating direction method
of multipliers (ADMM)

1. INTRODUCTION

Microphone array beamforming [1, 2] is a common technique that
enhances a target signal arriving from a specific direction while sup-
pressing surrounding noise. It has been widely applied, such as
in teleconference systems, car communication systems, and smart
speakers [3, 4]. Many beamformer design methods in the literature
estimate the optimal filters that minimize a cost function for output
noise power under certain constraints [5]. For example, the prob-
lem with the well-known minimum variance distortionless response
(MVDR) beamformer [6] is the minimization of the power of the
output signal subject to the constraints for the response to the tar-
get direction. Alternatively, the maximum likelihood (ML) beam-
former [7] minimizes the noise power in the output signal. Many
studies to improve the performance have been conducted by impos-
ing additive constraints or penalty terms on the cost function [8–12].

In many practical situations, we expect generated beamformers
to have multiple desired functions such as low latency and less dis-
tortion, while retaining as high of a noise reduction ratio as possible.
These demands are modeled by imposing probability assumptions on
variables derived from the filter (auxiliary variables of the filter). For
example, if we know that the target source is speech, the estimated
signal can be well approximated by the Laplace distribution due to
its sparseness in the time-frequency domain [13–15]. Furthermore,
we empirically know that the filter coefficients will change smoothly
with respect to frequency bins, although they are sometimes unsta-
ble at the bins where the spatial correlation matrix is rank-deficient.
Moreover, if the filter coefficients are cooperatively designed such
that the frequency elements change smoothly, they will result in a

low-latency filter. If we can incorporate these probabilistic assump-
tions into the filter estimation, it will be possible to have multiple
desired functions in the generated beamformer without specializing
it for only noise reduction. We will then be able to generate mul-
tifunctional beamformers. However, since the cost function forms
have been limited to relatively simple classes due to the limit of ap-
plication of simple optimization techniques, it has been difficult to
design beamformers to have multiple desired functions by just ap-
plying conventional methods.

In this paper, we propose a cost design method that imposes
probabilistic assumptions on the filter and its auxiliary variables.
We note that auxiliary variables (e.g. residual noises, estimated tar-
get signals, and the discrete differences between neighbor filter el-
ements) are mere affine transformations of the filter. If the proba-
bilistic assumptions for variables are given by log-concave distribu-
tions [16], the product of these distributions is also a log-concave
form. Its negative logarithm is then a sum of convex functions, with
which the filter and its auxiliary variables are linearly associated.
For such a constrained convex minimization problem, the alternat-
ing direction method of multipliers (ADMM) [17, 18] is an appli-
cable solver to obtain optimal filters. To show that a wide class of
probabilistic assumptions can be used for the auxiliary variables in
the proposed method, we will generate and evaluate a speech en-
hancement beamformer that has low latency while retaining the high
noise reduction ratio.

This paper is organized as follows. We formulate the problem
and overview the conventional methods in the context of probabilis-
tic optimization problems in Section 2. In Section 3, we propose a
cost function design for a function designable beamformer and its
optimization procedure. After evaluating the generated beamform-
ers in Section 4, we conclude this paper in Section 5.

2. FORMULATION OF BEAMFORMING METHODS

In this section, we first introduce symbol notations in 2.1. We then
briefly explain the conventional beamformer design methods in as-
sociation with probabilistic models in 2.2.

2.1. Problem Setting

Let us suppose that a microphone array with M omnidirectional sen-
sors is placed in the field. By applying the beamforming filters to the
recorded signals, we will emphasize the target signal arriving from
an identified direction. To model the observed signals, we intro-
duce several variables. Note that these variables are in the short-
time Fourier transform (STFT) domain unless stated otherwise. Let
af ∈ CM (f = 1, . . . , F ) be the transfer functions from the source
to microphones at every frequency bin f . We use sf,t ∈ C to denote
the target signal for each frame t (t = 1, . . . , T ). We also denote
the noise from the k-th interfering source as nik,f,t ∈ C. By using
these notations, the observed signal zf,t is modeled as instantaneous
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Table 1. Comparison of representative beamformer design methods whose cost form is given by product of probabilistic distributions.
Filter form − logPy(yf ) − logPe(ef ) Constraint on w̃∗ Given parameters

Delay Sum hs

hH
shs

- σ−2
e ∥e∥2 wHhs = 1 hs, σ

2
e

Maximum Likelihood (ML) R−1
e hs

hH
sR

−1
e hs

- eHR−1
e e wHhs = 1 hs,Re

MVDR R−1
z hs

hH
sR

−1
z hs

- eHR−1
z e wHhs = 1 hs,Rz

Robust Constraint on hs [10] Re(wHhs) ≥ 1, ∀hs ∈ E E (an ellipsoid)

mixtures
zf,t = sf,taf +

∑
k

nikf,taikf + nbf,t, (1)

where nbf,t represents background noise. Our task is to estimate the
beamforming filters wf ∈ CM such that the output yf,t ∈ C will be
close to sf,t. The yf,t is given by

yf,t = wH
fzf,t (2)

where the superscript H denotes the complex conjugate transpose.
For the later part of this paper, several variables that are derived

from filters and observed signals are defined. We can estimate the
residual noise components included in the observed signals ef,t ∈
CM , which are given by

ef,t = zf,t − yf,thf = zf,t − (wH
fzf,t) · hf . (3)

Here hf ∈ CM denotes the array manifold vector towards the target
direction. The ef,t will contain interference and background noises
if the beamformer output is mainly composed of the target signal.

Note that the relationships between the estimated variables (yf,t,
ef,t) and w̃ are described by affine transformations. To make this
apparent, a special notation is introduced. For arbitrary vector or
scalar-valued variables xf that have an index running over frequency
bins, we denote the vector containing all frequency bins’ information
as x̃ = (xT

1 , . . . ,x
T
F )

T. In addition, matrices Ft and Gt for each t
are introduced as

Ft = diag[z1,t,z2,t, . . . , zF,t]
T ∈ CF×MF , (4)

Gt = diag[h1z
T
1,t,h2z

T
2,t, . . . ,hFz

T
F,t] ∈ CMF×MF . (5)

With these notations, the beamformer output and residual compo-
nents in the STFT domain are expressed as the following forms:

ỹt = Ftw̃
∗, (6)

ẽt = −Gtw̃
∗ + z̃t (7)

where ∗ denotes the complex conjugate of the original vector.

2.2. Conventional Beamformer Design Methods
The conventional beamformer design methods are organized as a
probabilistic cost optimization problem. Assume that ỹ, ẽ, and
w̃∗ are random variables and their distributions Py(ỹ), Pe(ẽ), and
Pw(w̃

∗) are given, respectively. Py(ỹ) and Pe(ẽ) are expected to
reflect the statistical properties of the variables. On the other hand,
Pw(w̃

∗) is often used to directly represent the desired frequency
response to the target direction. Under these assumptions, the like-
lihood function of w̃∗ for any given observed signals {z̃t}Tt=1 is
expressed as

L(w̃∗ | {z̃t}) ∝
T∏

t=1

Py(ỹt | w̃
∗)Pe(ẽt | w̃∗) · Pw(w̃

∗), (8)

where the relationships between ỹt and ẽt and w̃∗ are given by (6)
and (7), respectively. Maximizing this likelihood w.r.t. w̃∗ will lead
to the optimal filter estimation:

minimize
w̃∗

L(w̃∗ | {z̃t}). (9)

The formulation (9) is applicable to various conventional beam-

former design methods. We briefly describe the derivation of the
MVDR beamformer as an example. Let us assume that the spatial
correlation matrices of zf ’s are given by Rf = Ezf [zfz

H
f ] (f =

1, . . . , F ). We also assume that ẽt is normally distributed: ef,t ∼
N (0,Rf ). In addition, the distortionless constraints on w∗

f ’s are
imposed: wH

faf = 1. Under these assumptions, the problem form
(9) is reformulated by

minimize
{wf}

F∑
f=1

(wf − γfR
−1
f af )

HRf (wf − γfR
−1
f af ) (10)

s.t. wH
faf = 1,

where γf = (aH
fR

−1
f af )

−1. Now it is clear that the solution is
the well-known MVDR beamformer woptf = γfR

−1
f af . Table 1

explains probabilistic assumption differences among representative
conventional methods.

However, since the formulation (9) is given by the optimiza-
tion w.r.t. w̃∗, two problems remain. One is that the probabilistic
assumption on sound signals is usually limited to simple distribu-
tion forms, e.g., normal distributions. However, normal distribu-
tions are suggested to not always be appropriate to express sound
signals [13, 14, 19]. The other problem is that the class of cost func-
tions or constraints of w̃∗ is too limited to consider various prob-
abilistic assumptions in parallel. Some studies have investigated
imposing additive assumptions for w̃∗ [10–12]. However, optimiz-
ing cost functions with a variety of complicated priors is generally
quite difficult since such cost functions are composed of diverse
w̃∗-dependent terms that are complexly correlated with each other.
These issues make it quite difficult to generate a beamformer that
has multiple desired functions such that it simultaneously achieves
low latency, stability, and high noise reduction performance, for ex-
ample.

To overcome these problems, it might be useful to impose the
probabilistic assumptions on the auxiliary variables such as ỹ (6)
and ẽ (7) and express the cost function as the sum of apparently
independent terms. Our considerations in this paper are based on
this idea.

3. PROPOSED METHOD

A new method for a function designable beamformer is proposed in
3.1. We then discuss applying this method in a realistic situation and
show its flexibility.

3.1. Problem Formulation
We propose a new method of beamformer cost design that depends
on not only w̃∗ but also the newly introduced auxiliary variables
(e.g. ẽ and ỹ). Here the auxiliary variables are supposed to be ex-
pressed as the affine transformations of w̃∗.

We first introduce J auxiliary variables vj (j = 1, . . . , J),
which are related to w̃∗ by vj = Djw̃

∗ + bj for every j. Note that
these are generalizations of ỹt (6) and ẽt (7); therefore, our method
will include the methods argued in the previous section. To simplify
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the notations, we write v̂ = (vT
1 , . . . ,v

T
J)

T, D̂ = (DT
1 , . . . ,D

T
J)

T,

and b̂ = (bT1 , . . . , b
T
J)

T, accordingly.
Using vj’s, suppose that the whole cost function can be ex-

pressed as

L(w̃∗, v̂) = L0(w̃
∗) +

J∑
j=1

Lj(vj), (11)

where each Lj (j = 0, . . . , J) is assumed to be convex. To see
the validity of this assumption, suppose that we use log-concave dis-
tributions for all the auxiliary variables such as ỹt’s or ẽt’s. Here,
a probability distribution is called log-concave if the negative log-
arithm of its density function is convex. Many probabilistic distri-
butions that are used to describe signals in audio signal processing
literature belong to this class, such as the normal and Laplace distri-
butions. Each Lj in (11) can be interpreted as the negative logarithm
of the likelihood for vj ; therefore, the convexity assumption is auto-
matically satisfied for such distributions.

Now our task is reduced to the typical constrained convex mini-
mization problem below:

minimize
v̂,w̃

L0(w̃
∗) +

J∑
j=1

Lj(vj) s.t. v̂ = D̂w̃∗ + b̂. (12)

This problem can be solved by dividing the whole problem into a
couple of subproblems that are linearly constrained, and then opti-
mizing each term repeatedly. Although there are various algorithms
that can be applied to the constrained convex optimization problems
of the form (12), the ADMM-based algorithm [18] is used as an in-
stance, shown in 3.3. In the next subsection, we specifically design
the proposed cost form assuming a practical situation.

3.2. Example of Cost Functions for Multifunctional Beam-
former
We now discuss the application of the proposed cost design method
(12) assuming a practical situation. In the following, we consider
a situation in which we want to enhance the speech signal from a
speaker for live streaming. Several interfering sources also exist,
which emit signals following the complex normal distributions at
each frequency bin. In such a situation, we prefer a beamformer that
is specialized for speech enhancement and achieves extremely low
latency in the time domain.

To incorporate the known property of signal distributions into
cost functions, we impose probabilistic assumptions on the auxiliary
variables ỹt and ẽt, which are defined as (6) and (7). As the distri-
bution of ẽt, we use the normal distribution

P (ef,t) ∝ exp(−eH
f,tR

−1
f ef,t). (13)

Meanwhile, the literature shows that a speech signal is often as-
sumed to be sparse in the STFT domain [13, 14]. Motivated by this
consideration, we adopt the Laplace distribution as distributions of
ỹt

P (yf,t) ∝ exp(−β|yf,t|) (14)
where β(> 0) is a constant related to the variance.

We also introduce new auxiliary variables and impose on them
the probabilistic distributions that induce the resultant beamformer
to perform with relatively low latency. To design these terms, we
first reconsider the meaning of w̃∗. Most conventional wide-band
beamformers estimate the optimal filter for each frequency bin indi-
vidually without taking into account the relevance between different
bins. However, the discontinuous or non-smooth w̃∗ with respect
to f may cause long impulse responses in the time domain. Fur-
thermore, we do not prefer the filter that contains the all-pass factor,
which causes unnecessary group delay. These unwanted character-
istics of filters increase the values of the discrete second derivatives

Algorithm 1 Beamformer optimization based on ADMM
1: Initialize v̂, û, γ.
2: for n = 1, . . . , Niteration do
3: w̃∗ ← argminw̃∗ L0(w̃

∗) + γ
2
∥D̂w̃∗ − v̂ + û+ b̂∥22

4: for j = 1, . . . , J do
5: vj ← proxLj(·)/γ(Djw̃

∗ + uj + bj)

6: uj ← uj +Djw̃
∗ − vj + bj

7: end for
8: end for
9: return w̃∗

of the phase response with respect to f . Motivated by these consid-
erations, we introduce new F − 2 auxiliary variables

ηf = w∗
f − 2w∗

f+1 +w∗
f+2 (f = 1, . . . , F − 2),

and define Lηf (ηf ) as
Lηf (ηf ) = λ

∥∥ηf

∥∥
2
, (15)

which means that ∥ηf∥’s should be small enough. To the best of our
knowledge, this is the first study that imposed probabilistic assump-
tions on the discrete second derivatives of the filter.

By introducing the probabilistic assumptions on variables
ẽ (13), ỹ (14), and w̃∗ (15) as shown above, the negative log
likelihood of the joint probability is written as

L(w̃, v̂) =

T∑
t=1

F∑
f=1

(eH
f,tR

−1
f ef,t + β|yf,t|) +

F−2∑
f=1

λ
∥∥ηf

∥∥
2
,

(16)

v̂ =
[
e1,1, . . . , eF,T , y1,1, . . . , yF,T ,η1, . . . ,ηF−2

]
.

(17)
We emphasize that all these 2FT + F − 2 auxiliary variables are
expressed as the affine transformations of w̃∗; therefore, the opti-
mization problem of (16) can be interpreted as an instance of (12).

3.3. ADMM-based Optimization Algorithm
To solve the constrained minimization problem (12) and derive a
fixed beamformer, we write out an iterative algorithm in this sub-
section. It is well known that ADMM is an effective solver for the
problem form (12). This algorithm solves the original problem by
solving its dual problem [20]. The ADMM-based method for solv-
ing (12) is written as Algorithm 1. Here, uj is a dual variable that
has the same dimension as its corresponding variable vj . In the fol-
lowing, we derive the concrete update rules for each variable of (17)
on the basis of this algorithm.

The update rule for w̃∗ is derived straightforwardly. Since L0(·)
vanishes in (16), it is simplified to

w̃∗ ← (D̂HD̂)−1D̂H(v̂ − û− b̂). (18)

Here D̂HD̂ =
∑

j D
H
j Dj is actually a block band matrix:

D̂HD̂ =


A1 + IM −2IM IM . . . 0
−2IM A2 + 5IM −4IM . . . 0
IM −4IM A3 + 6IM . . . 0

...
...

...
. . .

...
0 0 0 . . . AF + IM

 ,

(19)

where each Af = (1 + ∥hf∥22)
∑

t z
∗
f,tz

T
f,t is an M ×M matrix.

We can alleviate the computation cost of multiplying (D̂HD̂)−1 by
precomputing the Cholesky decomposition of D̂HD̂ [21].

On the other hand, the update rules for the auxiliary variables are
the proximal operators of the corresponding cost terms. Here, for a
given convex function f , the function proximal operator proxf (·) is
defined by proxf (x) = argminy f(y) + ∥x− y∥22/2. The update
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Table 2. Simulation conditions.
Signal fs = 16 kHz, 80000 samples (T = 5 s)
STFT Hann window, 1024 samples (64 ms)

Frame shift 512 samples (32 ms)
Input signal Target / (Interference + Background) : 3.5 dB,

Target / Background : 10.5 dB
Room 2 m * 1.5 m, absorption rate = 0.5

NIteration 100
γ (maximum eigenvalue of Rf ’s)−1

(λ, β) (0.3fsT, 0.01γ), (0, 0.01γ), (0.3fsT, 0)

rules for yf,t and ξf can be derived using the proximal operator of
the ℓ2 norm:

proxλ∥·∥2(z) = (∥z∥2 − λ)+
z

∥z∥2
(20)

where (·)+ denotes max(·, 0). The ef,t-dependent terms are just the
quadratic forms. The proximal operator of such a function is easily
derived from the definition. Consequently, the update rules for the
auxiliary variables are written as

ef,t ←
γ

2
Rf

(
I +

γ

2
Rf

)−1 (
zf,t − (wH

fzf,t)hf + ue,f,t

)
,

yf,t ←

(
1− β

γ|wH
fzf,t + uy,f,t|

)
+

(wH
fzf,t + uy,f,t), (21)

ηf ←

(
1− λ

γ∥w∗
f − 2w∗

f+1 +w∗
f+2 + uη,f∥

)
+

· (w∗
f − 2w∗

f+1 +w∗
f+2 + uη,f ).

As a result, the update rules if we adapt the ADMM to our con-
structed model are summarized as (18) and (21).

4. EXPERIMENT
4.1. Conditions
We conducted numerical simulations to evaluate the efficacy of the
proposed method. Six microphones were equally spaced on a cir-
cumference of radius 2 cm. We used 100 utterances recorded from
six male and female speakers as the target signals. The number of in-
terfering sources was chosen randomly from the range 2, . . . , 6 for
each trial, and their arrival directions were also randomly decided
within the range where the relative angle to the target source is more
than 60◦. Every interfering source independently emits the normally
distributed signal that is filtered by a low-pass filter with cutoff fre-
quency of 1600 Hz. The recorded signal is modeled as the sum of the
ones propagated from the sources and the weak white background
noise generated byN (0, σ2

nI), where σ2
n = 10−6. All the target and

interfering sources were located on the horizontal plane on which the
microphones lie, at a distance of 0.5 m. All of these elements were
in a rectangular room. The impulse responses were obtained by nu-
merical simulations in advance [22]. We compared the performance
of the proposed method with those of the conventional methods: the
MVDR and ML beamformers. In the proposed method, the initial
value of w̃ is taken to be the delay sum beamformer. Two vari-
ants of the proposed method were also evaluated: one ignores the
distribution for w̃∗ by setting λ = 0, and other ignores the distri-
bution for ẽ∗ by setting γ = 0. We evaluated the methods by using
the signal-to-distortion ratio (SDR) and signal-to-interference ratio
(SIR). Other conditions are summarized in Table 2.

4.2. Results
Figure 1 shows the SDR and SIR improvements for each method,
which represent how much the target signals were enhanced. The
results indicate that the proposed method improved the mean SDR

Conv.
(MVDR)

SDR 1.7 dB
SIR 2.1 dB

Conv.
(ML)

1.9 dB
2.6 dB

. .
(λ > 0, β > 0)

3.9 dB
3.9 dB

Proposed methods
(λ = 0, β > 0)

5.0 dB
5.0 dB

. .
(λ > 0, β = 0)

2.2 dB
2.1 dB
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Fig. 1. Comparison of signal-to-distortion ratio (SDR) and
signal-to-interference ratio (SIR) improvements between conven-
tional and proposed methods. Boxplots represent quantiles, mini-
mum/maximum values, and median for each condition. Dots also
indicate mean values. Both β = 0 and λ = 0 mean ignoring cost
terms for ỹ and w̃∗, respectively.
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Fig. 2. (Left) Phase responses of filters estimated by both conven-
tional (MVDR) and proposed methods. (Right) Filters’ impulse re-
sponses, normalized by their ℓ1 norms. Red dotted lines also indicate
times when cumulative sum of absolute amplitudes is equal to 90%
of their total sum.

and SIR by 2.0 and 1.3 dB, respectively. The SDR and SIR can be
further improved by ignoring the cost terms for w̃∗ (λ = 0).

To confirm the improvement of latency characteristics, we also
compared the phase characteristics and waveforms of the filters esti-
mated by both methods, as shown in Figure 2. These results suggest
that the proposed cost terms for w̃∗ were effective in reducing the
latency, as expected. The conventional method formed a long and
noisy tail, while the proposed method formed a relatively smooth fil-
ter by introducing the relationships among different frequency bins.

From these results, we can conclude that beamformers gener-
ated with the proposed method have multiple characteristics such as
better SDR/SIR improvement and less latency, compared with those
generated with conventional methods.

5. CONCLUSION

We proposed a probabilistic beamformer cost design method to give
a beamformer multiple desired functions. Its auxiliary variables (e.g.
residual noise, output signal) are affine transformations of filter co-
efficients. By imposing log-concave probabilistic assumptions for
each variable, the cost form is consequently a linearly constrained
convex minimization problem. To solve it, we applied an ADMM-
based solver to obtain the optimal filter. On the basis of the pro-
posed cost formulation, we showed a design example and confirmed
that the obtained beamformer remarkably enhanced the SDR and
SIR with low latency compared with conventional methods. For fu-
ture work, cost terms appropriate for each situation or application of
other optimization algorithms will be considered in detail.
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